Answer
Verified
353.1k+ views
Hint: When a body falls freely, its kinetic energy increases while its potential energy decreases. But the total mechanical energy is conserved during the free fall.The total mechanical energy of a body at a point during free fall is equal to the sum of kinetic energy and potential energy of the body at that point.
Complete step by step answer:
Consider a body of mass $m$ is in free fall motion as shown below.
Let the initial height of the body from the ground is $H$. The total energy of the body at the point A. The kinetic energy at the height $H$ is,
${\left( {K.E.} \right)_A} = \dfrac{1}{2}m{v^2}$
Here, $v$ is the initial velocity of the body i.e., $v = 0$
Therefore, ${\left( {K.E.} \right)_A} = 0$
The potential energy of the body at A is ${\left( {P.E.} \right)_A} = mgH$
We know that the total energy of the body is $E = K.E + P.E$
$E = 0 + mgH$
$ \Rightarrow E = mgH$
The total energy of the body at the point B.
Apply the kinematic equation when the body at the point B, ${v^2} - {u^2} = 2aS$
The initial velocity of the body is $u = 0$,
The acceleration of the body $a = g$
The height of the body at B from the ground is $h$.
So, the displacement $S = H - h$
Therefore, ${v^2} = 2g\left( {H - h} \right)$
The kinetic energy at B, ${\left( {K.E} \right)_B} = \dfrac{1}{2}m{v^2}$
${\left( {K.E.} \right)_B} = \dfrac{1}{2}m \cdot 2g\left( {H - h} \right)$
$\Rightarrow {\left( {K.E.} \right)_B} = mg\left( {H - h} \right)$
The potential energy at B, ${\left( {P.E.} \right)_B} = mgh$
The total energy of the body at point B, $E = {\left( {K.E.} \right)_B} + {\left( {P.E.} \right)_B}$
Substitute all the required values in the above formula, we got,
$E = mg\left( {H - h} \right) + mgh$
$ \Rightarrow E = mgH$
The total energy of the body at the ground.
Similarly, apply the kinematic equation when the body is at the ground point O just before the rest.
${v^2} - {u^2} = 2gH$
$\Rightarrow v = 2gH$
The kinetic energy of the body at the ground point O is maximum and is given by
${\left( {K.E.} \right)_O} = \dfrac{1}{2}m \cdot 2gH$
$\Rightarrow {\left( {K.E.} \right)_O} = mgH$
The potential energy of the body at the ground is ${\left( {P.E.} \right)_O} = 0$
The total energy of the body at the ground is,
$E = {\left( {K.E.} \right)_O} + {\left( {P.E.} \right)_O}$
$\Rightarrow E = mgH + 0$
$ \therefore E = mgH$
From above all the three cases, it is found that $E = mgH$.
Hence, the total energy of a body during free fall is constant.
Note: A body is said to be in free fall motion, when gravity is the only force acting on the body. Therefore, no object has truly free-fall motion due to air friction.Kinetic energy is the energy possessed by a body by virtue of its motion. Potential energy is the energy acquired by a body due to its configuration or change in its position.
Complete step by step answer:
Consider a body of mass $m$ is in free fall motion as shown below.
Let the initial height of the body from the ground is $H$. The total energy of the body at the point A. The kinetic energy at the height $H$ is,
${\left( {K.E.} \right)_A} = \dfrac{1}{2}m{v^2}$
Here, $v$ is the initial velocity of the body i.e., $v = 0$
Therefore, ${\left( {K.E.} \right)_A} = 0$
The potential energy of the body at A is ${\left( {P.E.} \right)_A} = mgH$
We know that the total energy of the body is $E = K.E + P.E$
$E = 0 + mgH$
$ \Rightarrow E = mgH$
The total energy of the body at the point B.
Apply the kinematic equation when the body at the point B, ${v^2} - {u^2} = 2aS$
The initial velocity of the body is $u = 0$,
The acceleration of the body $a = g$
The height of the body at B from the ground is $h$.
So, the displacement $S = H - h$
Therefore, ${v^2} = 2g\left( {H - h} \right)$
The kinetic energy at B, ${\left( {K.E} \right)_B} = \dfrac{1}{2}m{v^2}$
${\left( {K.E.} \right)_B} = \dfrac{1}{2}m \cdot 2g\left( {H - h} \right)$
$\Rightarrow {\left( {K.E.} \right)_B} = mg\left( {H - h} \right)$
The potential energy at B, ${\left( {P.E.} \right)_B} = mgh$
The total energy of the body at point B, $E = {\left( {K.E.} \right)_B} + {\left( {P.E.} \right)_B}$
Substitute all the required values in the above formula, we got,
$E = mg\left( {H - h} \right) + mgh$
$ \Rightarrow E = mgH$
The total energy of the body at the ground.
Similarly, apply the kinematic equation when the body is at the ground point O just before the rest.
${v^2} - {u^2} = 2gH$
$\Rightarrow v = 2gH$
The kinetic energy of the body at the ground point O is maximum and is given by
${\left( {K.E.} \right)_O} = \dfrac{1}{2}m \cdot 2gH$
$\Rightarrow {\left( {K.E.} \right)_O} = mgH$
The potential energy of the body at the ground is ${\left( {P.E.} \right)_O} = 0$
The total energy of the body at the ground is,
$E = {\left( {K.E.} \right)_O} + {\left( {P.E.} \right)_O}$
$\Rightarrow E = mgH + 0$
$ \therefore E = mgH$
From above all the three cases, it is found that $E = mgH$.
Hence, the total energy of a body during free fall is constant.
Note: A body is said to be in free fall motion, when gravity is the only force acting on the body. Therefore, no object has truly free-fall motion due to air friction.Kinetic energy is the energy possessed by a body by virtue of its motion. Potential energy is the energy acquired by a body due to its configuration or change in its position.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it