Answer
Verified
401.4k+ views
Hint: Hydrogen cyanide is an acid that has molecular formula $H-C\equiv N$. We know that when a pair of electrons are shared by two atoms, a covalent bond is formed. Sigma ($\sigma $) bonds and pi ($\pi $) bonds are two types of covalent bonds.
Complete step by step solution:
The strongest type of covalent chemical bond is a sigma ($\sigma $) bond. A sigma ($\sigma $) bond is formed when the atomic orbitals overlap head-on. Usually, sigma ($\sigma $) bonds are single bonds.
The sigma ($\sigma $) bonds are symmetrical and can rotate about the bond axis. Some of the most common sigma bonds are s+s, ${{p}_{z}}+{{p}_{z}}$, s+${{p}_{z}}$, and ${{d}_{{{z}^{2}}}}+{{d}_{{{z}^{2}}}}$. Here, s, p, and d are atomic orbitals and z is the bond axis.
Now, the covalent chemical bonds which are formed when the atomic orbitals overlap laterally are known as pi ($\pi $) bonds. Usually, there is 1 pi ($\pi $) bond in double bonds and 2 pi ($\pi $) bonds in triple bonds.
Pi ($\pi $) bonds cannot rotate about the bond axis without breaking the bond.
Now, in HCN, we can see that there are two single bonds, H-C and C-N, hence it has two sigma ($\sigma $) bonds. Whereas it has a triple bond in $C\equiv N$ and hence has two pi ($\pi $) bonds.
So, the HCN molecule has 2 sigma ($\sigma $) bonds and 2 pi ($\pi $) bonds.
Additional Information: Some of the properties of HCN are
- It can be synthesized by combining ammonia and methane
\[2C{{H}_{4}}+2N{{H}_{3}}+3{{O}_{2}}\xrightarrow[\Delta =1200{}^\circ C]{Pt}2HCN+6{{H}_{2}}O\]
- It has an odor of bitter almond oil.
- It exists in both the gaseous as well as the liquid state.
- It has a melting point of 259.86 K and a boiling point of 299.00 K.
- It has a density of 0.69 g/l.
- It has a linear structure.
- It is extremely toxic as well as poisonous in nature and has been used as chemical weapons.
- It is colorless and is soluble and miscible in water and ethanol.
Note: It should be noted that even though pi ($\pi $) bonds are weaker than sigma ($\sigma $) bonds, but when atoms are bonded by both sigma ($\sigma $) bonds and pi ($\pi $) bonds, their strength is greater than either of the bonds alone. Hence the strength of multiple bonds (double and triple bonds) is more than that of a single bond.
Complete step by step solution:
The strongest type of covalent chemical bond is a sigma ($\sigma $) bond. A sigma ($\sigma $) bond is formed when the atomic orbitals overlap head-on. Usually, sigma ($\sigma $) bonds are single bonds.
The sigma ($\sigma $) bonds are symmetrical and can rotate about the bond axis. Some of the most common sigma bonds are s+s, ${{p}_{z}}+{{p}_{z}}$, s+${{p}_{z}}$, and ${{d}_{{{z}^{2}}}}+{{d}_{{{z}^{2}}}}$. Here, s, p, and d are atomic orbitals and z is the bond axis.
Now, the covalent chemical bonds which are formed when the atomic orbitals overlap laterally are known as pi ($\pi $) bonds. Usually, there is 1 pi ($\pi $) bond in double bonds and 2 pi ($\pi $) bonds in triple bonds.
Pi ($\pi $) bonds cannot rotate about the bond axis without breaking the bond.
Now, in HCN, we can see that there are two single bonds, H-C and C-N, hence it has two sigma ($\sigma $) bonds. Whereas it has a triple bond in $C\equiv N$ and hence has two pi ($\pi $) bonds.
So, the HCN molecule has 2 sigma ($\sigma $) bonds and 2 pi ($\pi $) bonds.
Additional Information: Some of the properties of HCN are
- It can be synthesized by combining ammonia and methane
\[2C{{H}_{4}}+2N{{H}_{3}}+3{{O}_{2}}\xrightarrow[\Delta =1200{}^\circ C]{Pt}2HCN+6{{H}_{2}}O\]
- It has an odor of bitter almond oil.
- It exists in both the gaseous as well as the liquid state.
- It has a melting point of 259.86 K and a boiling point of 299.00 K.
- It has a density of 0.69 g/l.
- It has a linear structure.
- It is extremely toxic as well as poisonous in nature and has been used as chemical weapons.
- It is colorless and is soluble and miscible in water and ethanol.
Note: It should be noted that even though pi ($\pi $) bonds are weaker than sigma ($\sigma $) bonds, but when atoms are bonded by both sigma ($\sigma $) bonds and pi ($\pi $) bonds, their strength is greater than either of the bonds alone. Hence the strength of multiple bonds (double and triple bonds) is more than that of a single bond.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE