Answer
Verified
500.4k+ views
Hint: Use the fact that the total volume of all coins melted will be equal to the volume of cuboid being made. Each coin can be considered as a cylinder and its volume can be calculated using $V=\pi {{r}^{2}}h$. The volume of the cuboid can be calculated using the formula $V=l\times b\times h$.
“Complete step-by-step answer:”
A coin can be considered to be a cylinder with the height of the cylinder as the thickness of the coin and the diameter as given.
Hence, the volume of one coin can be calculated using the formula for volume of a cylinder, $V=\pi {{r}^{2}}h$.
The radius $r=\dfrac{d}{2}$ where d is the given diameter
Hence, \[r=\dfrac{1.75cm}{2}\]
\[\begin{align}
& \Rightarrow r=\dfrac{17.5mm}{2} \\
& \Rightarrow r=8.75mm \\
\end{align}\]
Using this radius and height $h=2mm$in the above formula, we get
$\begin{align}
& V=\pi {{r}^{2}}h \\
& \Rightarrow V=\pi {{\left( 8.75mm \right)}^{2}}\left( 2mm \right) \\
& \Rightarrow V=\pi \left( 76.5625m{{m}^{2}} \right)\left( 2mm \right) \\
& \Rightarrow V=\dfrac{22}{7}\left( 153.125m{{m}^{3}} \right) \\
& \Rightarrow V=481.25m{{m}^{3}} \\
\end{align}$
Hence the volume of one coin is $481.25m{{m}^{3}}$.
Let us now assume that the number of coins required to be melted is n.
Thus, the volume of n coins will be equal to the volume of the cuboid.
The volume of cuboid is given by the formula, $V=l\times b\times h$
Putting the values of $l=5.5cm,\ b=10cm,\ h=3.5cm$ in the above formula we get
$\begin{align}
& V=5.5cm\times 10cm\times 3.5cm \\
& \Rightarrow V=192.5c{{m}^{3}} \\
\end{align}$
This volume is now equal to the volume of n coins. Using the volume of coin and cuboid we get,
$n\left( 481.25m{{m}^{3}} \right)=192.5c{{m}^{3}}$
Converting $c{{m}^{3}}$ into $m{{m}^{3}}$,
\[\begin{align}
& n\left( 481.25m{{m}^{3}} \right)=192.5\times 1000m{{m}^{3}} \\
& \Rightarrow n=\dfrac{192500m{{m}^{3}}}{481.25m{{m}^{3}}} \\
& \Rightarrow n=400 \\
\end{align}\]
Thus n = 400 coins are required to be melted to form a cuboid of the given dimensions.
Note: It is important to keep the units in mind while doing this question. While calculating the volume of the coin, the radius is in cm while the thickness is in mm. Hence, all dimensions should be carefully converted in the same unit before calculating the values. Similarly, the conversions need to be carefully carried out at other places as well, as required.
“Complete step-by-step answer:”
A coin can be considered to be a cylinder with the height of the cylinder as the thickness of the coin and the diameter as given.
Hence, the volume of one coin can be calculated using the formula for volume of a cylinder, $V=\pi {{r}^{2}}h$.
The radius $r=\dfrac{d}{2}$ where d is the given diameter
Hence, \[r=\dfrac{1.75cm}{2}\]
\[\begin{align}
& \Rightarrow r=\dfrac{17.5mm}{2} \\
& \Rightarrow r=8.75mm \\
\end{align}\]
Using this radius and height $h=2mm$in the above formula, we get
$\begin{align}
& V=\pi {{r}^{2}}h \\
& \Rightarrow V=\pi {{\left( 8.75mm \right)}^{2}}\left( 2mm \right) \\
& \Rightarrow V=\pi \left( 76.5625m{{m}^{2}} \right)\left( 2mm \right) \\
& \Rightarrow V=\dfrac{22}{7}\left( 153.125m{{m}^{3}} \right) \\
& \Rightarrow V=481.25m{{m}^{3}} \\
\end{align}$
Hence the volume of one coin is $481.25m{{m}^{3}}$.
Let us now assume that the number of coins required to be melted is n.
Thus, the volume of n coins will be equal to the volume of the cuboid.
The volume of cuboid is given by the formula, $V=l\times b\times h$
Putting the values of $l=5.5cm,\ b=10cm,\ h=3.5cm$ in the above formula we get
$\begin{align}
& V=5.5cm\times 10cm\times 3.5cm \\
& \Rightarrow V=192.5c{{m}^{3}} \\
\end{align}$
This volume is now equal to the volume of n coins. Using the volume of coin and cuboid we get,
$n\left( 481.25m{{m}^{3}} \right)=192.5c{{m}^{3}}$
Converting $c{{m}^{3}}$ into $m{{m}^{3}}$,
\[\begin{align}
& n\left( 481.25m{{m}^{3}} \right)=192.5\times 1000m{{m}^{3}} \\
& \Rightarrow n=\dfrac{192500m{{m}^{3}}}{481.25m{{m}^{3}}} \\
& \Rightarrow n=400 \\
\end{align}\]
Thus n = 400 coins are required to be melted to form a cuboid of the given dimensions.
Note: It is important to keep the units in mind while doing this question. While calculating the volume of the coin, the radius is in cm while the thickness is in mm. Hence, all dimensions should be carefully converted in the same unit before calculating the values. Similarly, the conversions need to be carefully carried out at other places as well, as required.
Recently Updated Pages
In the following figure the value of resistor to be class 10 physics CBSE
What is the maximum resistance which can be made using class 10 physics CBSE
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE