Answer
Verified
497.1k+ views
Hint: In this question, we first need to look at the definitions of power, index and exponent. Then we need to use the laws of exponent to solve the given question.
\[{{\left( \dfrac{a}{b} \right)}^{m}}=\dfrac{{{a}^{m}}}{{{b}^{m}}}\]
\[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\]
Complete step-by-step answer:
Let us look at some of the basic definitions and formulae.
POWER AND INDEX:
If a number is multiplied by itself n times, the product is called nth power of a and is written as an. In an, a is called the base and n is called the index.
If a is a rational number and m is a positive integer, then
\[{{a}^{m}}=a\times a\times a....\left( mtimes \right)\]
If a is a non-zero rational number and m is a positive integer, then
\[\begin{align}
& {{a}^{-m}}={{a}^{-1}}\times {{a}^{-1}}\times {{a}^{-1}}....\left( mtimes \right) \\
& {{a}^{-m}}=\dfrac{1}{a}\times \dfrac{1}{a}\times \dfrac{1}{a}\times \dfrac{1}{a}....\left( mtimes \right)={{\left( \dfrac{1}{a} \right)}^{m}} \\
\end{align}\]
If a and b are non-zero rational numbers and m is a positive integer such that am = b, then we can say that :
\[{{b}^{\dfrac{1}{m}}}=a\]
\[{{b}^{\dfrac{1}{m}}}\] may also be written as \[\sqrt[m]{b}\] .
If a is a non-zero rational number, then for positive rational number exponent \[\dfrac{p}{q}\] , then number \[{{a}^{\dfrac{-p}{q}}}\] may be defined as
\[{{a}^{\dfrac{-p}{q}}}=\dfrac{1}{{{a}^{\dfrac{p}{q}}}}={{\left( \dfrac{1}{a} \right)}^{\dfrac{p}{q}}}\]
LAWS OF EXPONENT: If a and b are positive rational numbers and m and n are ratioanl exponents (positive or negative) , then
\[\begin{align}
& {{a}^{m}}\times {{a}^{n}}={{a}^{m+n}} \\
& {{a}^{m}}\div {{a}^{n}}={{a}^{m-n}} \\
& {{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}} \\
& {{\left( \dfrac{a}{b} \right)}^{m}}=\dfrac{{{a}^{m}}}{{{b}^{m}}} \\
\end{align}\]
EXPONENTIAL AND RADICAL FORMS: If y is a positive rational number and q is a positive integer and \[{{y}^{\dfrac{1}{q}}}=x\] , then we can also write:
\[x=\sqrt[q]{y}\].
The form \[{{y}^{\dfrac{1}{q}}}\] is called exponential form. The number y is called the base and \[\dfrac{1}{q}\] is called the exponent.
The form \[\sqrt[q]{y}\] is called the radical form. The number q is called the index of the radical and y is called the radicand. The index of the radical is always taken positive.
Now, by considering the given term in the question we get,
\[\begin{align}
& \Rightarrow {{\left( \dfrac{1}{{{2}^{3}}} \right)}^{2}} \\
& \Rightarrow \dfrac{{{1}^{2}}}{{{\left( {{2}^{3}} \right)}^{2}}}\text{ }\left[ \because {{\left( \dfrac{a}{b} \right)}^{m}}=\dfrac{{{a}^{m}}}{{{b}^{m}}} \right] \\
& \Rightarrow \dfrac{1}{{{2}^{3\times 2}}}\text{ }\left[ \because {{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}} \right] \\
& \Rightarrow \dfrac{1}{{{2}^{6}}} \\
\end{align}\]
Note: If a number expressed in exponential form has a negative exponent, then first the exponent must be changed to positive by taking the reciprocal of the base.
While applying the laws of exponents to the given term we need to be careful about the law we are going to apply and then write it in the respective form accordingly.
Let a be a non-zero rational number and \[\dfrac{p}{q}\] be a positive rational number, then
\[{{a}^{\dfrac{p}{q}}}\] can be defined as:
\[{{a}^{\dfrac{p}{q}}}={{\left( {{a}^{p}} \right)}^{\dfrac{1}{q}}}\]
\[{{\left( \dfrac{a}{b} \right)}^{m}}=\dfrac{{{a}^{m}}}{{{b}^{m}}}\]
\[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\]
Complete step-by-step answer:
Let us look at some of the basic definitions and formulae.
POWER AND INDEX:
If a number is multiplied by itself n times, the product is called nth power of a and is written as an. In an, a is called the base and n is called the index.
If a is a rational number and m is a positive integer, then
\[{{a}^{m}}=a\times a\times a....\left( mtimes \right)\]
If a is a non-zero rational number and m is a positive integer, then
\[\begin{align}
& {{a}^{-m}}={{a}^{-1}}\times {{a}^{-1}}\times {{a}^{-1}}....\left( mtimes \right) \\
& {{a}^{-m}}=\dfrac{1}{a}\times \dfrac{1}{a}\times \dfrac{1}{a}\times \dfrac{1}{a}....\left( mtimes \right)={{\left( \dfrac{1}{a} \right)}^{m}} \\
\end{align}\]
If a and b are non-zero rational numbers and m is a positive integer such that am = b, then we can say that :
\[{{b}^{\dfrac{1}{m}}}=a\]
\[{{b}^{\dfrac{1}{m}}}\] may also be written as \[\sqrt[m]{b}\] .
If a is a non-zero rational number, then for positive rational number exponent \[\dfrac{p}{q}\] , then number \[{{a}^{\dfrac{-p}{q}}}\] may be defined as
\[{{a}^{\dfrac{-p}{q}}}=\dfrac{1}{{{a}^{\dfrac{p}{q}}}}={{\left( \dfrac{1}{a} \right)}^{\dfrac{p}{q}}}\]
LAWS OF EXPONENT: If a and b are positive rational numbers and m and n are ratioanl exponents (positive or negative) , then
\[\begin{align}
& {{a}^{m}}\times {{a}^{n}}={{a}^{m+n}} \\
& {{a}^{m}}\div {{a}^{n}}={{a}^{m-n}} \\
& {{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}} \\
& {{\left( \dfrac{a}{b} \right)}^{m}}=\dfrac{{{a}^{m}}}{{{b}^{m}}} \\
\end{align}\]
EXPONENTIAL AND RADICAL FORMS: If y is a positive rational number and q is a positive integer and \[{{y}^{\dfrac{1}{q}}}=x\] , then we can also write:
\[x=\sqrt[q]{y}\].
The form \[{{y}^{\dfrac{1}{q}}}\] is called exponential form. The number y is called the base and \[\dfrac{1}{q}\] is called the exponent.
The form \[\sqrt[q]{y}\] is called the radical form. The number q is called the index of the radical and y is called the radicand. The index of the radical is always taken positive.
Now, by considering the given term in the question we get,
\[\begin{align}
& \Rightarrow {{\left( \dfrac{1}{{{2}^{3}}} \right)}^{2}} \\
& \Rightarrow \dfrac{{{1}^{2}}}{{{\left( {{2}^{3}} \right)}^{2}}}\text{ }\left[ \because {{\left( \dfrac{a}{b} \right)}^{m}}=\dfrac{{{a}^{m}}}{{{b}^{m}}} \right] \\
& \Rightarrow \dfrac{1}{{{2}^{3\times 2}}}\text{ }\left[ \because {{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}} \right] \\
& \Rightarrow \dfrac{1}{{{2}^{6}}} \\
\end{align}\]
Note: If a number expressed in exponential form has a negative exponent, then first the exponent must be changed to positive by taking the reciprocal of the base.
While applying the laws of exponents to the given term we need to be careful about the law we are going to apply and then write it in the respective form accordingly.
Let a be a non-zero rational number and \[\dfrac{p}{q}\] be a positive rational number, then
\[{{a}^{\dfrac{p}{q}}}\] can be defined as:
\[{{a}^{\dfrac{p}{q}}}={{\left( {{a}^{p}} \right)}^{\dfrac{1}{q}}}\]
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE