Answer
Verified
432k+ views
Hint: To simplify the expression we will use the Least Common Multiple (LCM). We will first make the different denominators of both the fraction same by taking the LCM of each other. The numerators of the respective fractions are multiplied by the factor by which the denominators are made similar to the LCM of the denominator.
Complete step by step answer:
According to the given question, we have to solve the given expression.
LCM of any two numbers would mean the product of the least common factors of the two numbers involved.
For example- LCM of 4 and 8 will be
\[\begin{align}
& 4=2\times 2 \\
& 8=2\times 2\times 2
\end{align}\]
\[LCM(4,8)=8\]
So we will start solving the expression by taking the LCM of 7 and 5 which is:
\[7=7\times 1\]
\[5=5\times 1\]
\[LCM(7,5)=35\]
Hence we get the LCM as 35.
For the fraction \[-\dfrac{2}{7}\], the denominator will be multiplied by 5 to get equal with the LCM and so the numerator will also be multiplied by 5.
Similarly, the fraction \[-\dfrac{2}{5}\], denominator will be multiplied by 7 to get equal with the LCM and so the numerator will also be multiplied by 7.
Therefore, based on the above statements we have the expression as:
\[\Rightarrow -\dfrac{2\times 5}{7\times 5}+\left( -\dfrac{2\times 7}{5\times 7} \right)\]
Multiplying each of the component with the associated factor we have,
\[\Rightarrow -\dfrac{10}{35}+\left( -\dfrac{14}{35} \right)\]
It can also be grouped as:
\[\Rightarrow \dfrac{-10-14}{35}\]
Doing the required subtraction, we have,
\[\Rightarrow \dfrac{-24}{35}\]
Therefore, we have the required simplified form \[ \dfrac{-24}{35}\]
Note: The given expression has a negative sign within a parenthesis, it should not be misinterpreted and should be solved appropriately. LCM should not be confused with HCF which is the Highest Common Factor. Taking the above example of LCM to explain the HCF.
For example- HCF of 4 and 8
\[\begin{align}
& 4=2\times 2 \\
& 8=2\times 2\times 2
\end{align}\]
\[HCF(4,8)=4\]
Complete step by step answer:
According to the given question, we have to solve the given expression.
LCM of any two numbers would mean the product of the least common factors of the two numbers involved.
For example- LCM of 4 and 8 will be
\[\begin{align}
& 4=2\times 2 \\
& 8=2\times 2\times 2
\end{align}\]
\[LCM(4,8)=8\]
So we will start solving the expression by taking the LCM of 7 and 5 which is:
\[7=7\times 1\]
\[5=5\times 1\]
\[LCM(7,5)=35\]
Hence we get the LCM as 35.
For the fraction \[-\dfrac{2}{7}\], the denominator will be multiplied by 5 to get equal with the LCM and so the numerator will also be multiplied by 5.
Similarly, the fraction \[-\dfrac{2}{5}\], denominator will be multiplied by 7 to get equal with the LCM and so the numerator will also be multiplied by 7.
Therefore, based on the above statements we have the expression as:
\[\Rightarrow -\dfrac{2\times 5}{7\times 5}+\left( -\dfrac{2\times 7}{5\times 7} \right)\]
Multiplying each of the component with the associated factor we have,
\[\Rightarrow -\dfrac{10}{35}+\left( -\dfrac{14}{35} \right)\]
It can also be grouped as:
\[\Rightarrow \dfrac{-10-14}{35}\]
Doing the required subtraction, we have,
\[\Rightarrow \dfrac{-24}{35}\]
Therefore, we have the required simplified form \[ \dfrac{-24}{35}\]
Note: The given expression has a negative sign within a parenthesis, it should not be misinterpreted and should be solved appropriately. LCM should not be confused with HCF which is the Highest Common Factor. Taking the above example of LCM to explain the HCF.
For example- HCF of 4 and 8
\[\begin{align}
& 4=2\times 2 \\
& 8=2\times 2\times 2
\end{align}\]
\[HCF(4,8)=4\]
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE