
Simplify: \[\dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}}\]
Answer
622.2k+ views
Hint: For simplification, use
$
\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) \\
\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right) \\
$
Given equation is
\[\dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}}..................\left( 1 \right)\]
Now, simplify the terms in the expression using the formulas given in the hint,
$
\Rightarrow \left( {{a^2} - 16} \right) = \left( {{a^2} - {4^2}} \right) = \left( {a - 4} \right)\left( {a + 4} \right) \\
\Rightarrow \left( {{a^3} - 8} \right) = \left( {{a^3} - {2^3}} \right) = \left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right) \\
$
Now, factorize the remaining terms of the expression
$
\Rightarrow \left( {2{a^2} - 3a - 2} \right) = \left( {2{a^2} - 4a + a - 2} \right) = 2a\left( {a - 2} \right) + 1\left( {a - 2} \right) = \left( {2a + 1} \right)\left( {a - 2} \right) \\
\Rightarrow \left( {2{a^2} + 9a + 4} \right) = \left( {2{a^2} + 8a + a + 4} \right) = 2a\left( {a + 4} \right) + 1\left( {a + 4} \right) = \left( {2a + 1} \right)\left( {a + 4} \right) \\
\Rightarrow \left( {3{a^2} - 11a - 4} \right) = \left( {3{a^2} - 12a + a - 4} \right) = 3a\left( {a - 4} \right) + 1\left( {a - 4} \right) = \left( {3a + 1} \right)\left( {a - 4} \right) \\
$
Substitute those in equation 1
$
\Rightarrow \dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}} \\
\Rightarrow \dfrac{{\left( {a - 4} \right)\left( {a + 4} \right)}}{{\left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right)}} \times \dfrac{{\left( {2a + 1} \right)\left( {a - 2} \right)}}{{\left( {2a + 1} \right)\left( {a + 4} \right)}} \div \dfrac{{\left( {3a + 1} \right)\left( {a - 4} \right)}}{{\left( {{a^2} + 4 + 2a} \right)}}...........\left( 2 \right) \\
$
Now we know if we convert division into multiplication, then numerator and denominator will interchange, therefore equation 2 can be written as
\[\Rightarrow \dfrac{{\left( {a - 4} \right)\left( {a + 4} \right)}}{{\left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right)}} \times \dfrac{{\left( {2a + 1} \right)\left( {a - 2} \right)}}{{\left( {2a + 1} \right)\left( {a + 4} \right)}} \times \dfrac{{\left( {{a^2} + 4 + 2a} \right)}}{{\left( {3a + 1} \right)\left( {a - 4} \right)}} \\
\]
Now as we see all terms are cancel out only one term is remaining which is \[\dfrac{1}{{\left( {3a + 1} \right)}}\]
\[ \Rightarrow \dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}} = \dfrac{1}{{\left( {3a + 1} \right)}}\]
So, this is the required simplification.
Note: - In these types of questions the key concept is to use the formula of $\left( {{a^2} - {b^2}} \right)$ and $\left( {{a^3} - {b^3}} \right)$ to simplify the given expression to get the required result.
$
\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) \\
\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right) \\
$
Given equation is
\[\dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}}..................\left( 1 \right)\]
Now, simplify the terms in the expression using the formulas given in the hint,
$
\Rightarrow \left( {{a^2} - 16} \right) = \left( {{a^2} - {4^2}} \right) = \left( {a - 4} \right)\left( {a + 4} \right) \\
\Rightarrow \left( {{a^3} - 8} \right) = \left( {{a^3} - {2^3}} \right) = \left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right) \\
$
Now, factorize the remaining terms of the expression
$
\Rightarrow \left( {2{a^2} - 3a - 2} \right) = \left( {2{a^2} - 4a + a - 2} \right) = 2a\left( {a - 2} \right) + 1\left( {a - 2} \right) = \left( {2a + 1} \right)\left( {a - 2} \right) \\
\Rightarrow \left( {2{a^2} + 9a + 4} \right) = \left( {2{a^2} + 8a + a + 4} \right) = 2a\left( {a + 4} \right) + 1\left( {a + 4} \right) = \left( {2a + 1} \right)\left( {a + 4} \right) \\
\Rightarrow \left( {3{a^2} - 11a - 4} \right) = \left( {3{a^2} - 12a + a - 4} \right) = 3a\left( {a - 4} \right) + 1\left( {a - 4} \right) = \left( {3a + 1} \right)\left( {a - 4} \right) \\
$
Substitute those in equation 1
$
\Rightarrow \dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}} \\
\Rightarrow \dfrac{{\left( {a - 4} \right)\left( {a + 4} \right)}}{{\left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right)}} \times \dfrac{{\left( {2a + 1} \right)\left( {a - 2} \right)}}{{\left( {2a + 1} \right)\left( {a + 4} \right)}} \div \dfrac{{\left( {3a + 1} \right)\left( {a - 4} \right)}}{{\left( {{a^2} + 4 + 2a} \right)}}...........\left( 2 \right) \\
$
Now we know if we convert division into multiplication, then numerator and denominator will interchange, therefore equation 2 can be written as
\[\Rightarrow \dfrac{{\left( {a - 4} \right)\left( {a + 4} \right)}}{{\left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right)}} \times \dfrac{{\left( {2a + 1} \right)\left( {a - 2} \right)}}{{\left( {2a + 1} \right)\left( {a + 4} \right)}} \times \dfrac{{\left( {{a^2} + 4 + 2a} \right)}}{{\left( {3a + 1} \right)\left( {a - 4} \right)}} \\
\]
Now as we see all terms are cancel out only one term is remaining which is \[\dfrac{1}{{\left( {3a + 1} \right)}}\]
\[ \Rightarrow \dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}} = \dfrac{1}{{\left( {3a + 1} \right)}}\]
So, this is the required simplification.
Note: - In these types of questions the key concept is to use the formula of $\left( {{a^2} - {b^2}} \right)$ and $\left( {{a^3} - {b^3}} \right)$ to simplify the given expression to get the required result.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

