Answer
Verified
502.2k+ views
Hint: For simplification, use
$
\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) \\
\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right) \\
$
Given equation is
\[\dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}}..................\left( 1 \right)\]
Now, simplify the terms in the expression using the formulas given in the hint,
$
\Rightarrow \left( {{a^2} - 16} \right) = \left( {{a^2} - {4^2}} \right) = \left( {a - 4} \right)\left( {a + 4} \right) \\
\Rightarrow \left( {{a^3} - 8} \right) = \left( {{a^3} - {2^3}} \right) = \left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right) \\
$
Now, factorize the remaining terms of the expression
$
\Rightarrow \left( {2{a^2} - 3a - 2} \right) = \left( {2{a^2} - 4a + a - 2} \right) = 2a\left( {a - 2} \right) + 1\left( {a - 2} \right) = \left( {2a + 1} \right)\left( {a - 2} \right) \\
\Rightarrow \left( {2{a^2} + 9a + 4} \right) = \left( {2{a^2} + 8a + a + 4} \right) = 2a\left( {a + 4} \right) + 1\left( {a + 4} \right) = \left( {2a + 1} \right)\left( {a + 4} \right) \\
\Rightarrow \left( {3{a^2} - 11a - 4} \right) = \left( {3{a^2} - 12a + a - 4} \right) = 3a\left( {a - 4} \right) + 1\left( {a - 4} \right) = \left( {3a + 1} \right)\left( {a - 4} \right) \\
$
Substitute those in equation 1
$
\Rightarrow \dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}} \\
\Rightarrow \dfrac{{\left( {a - 4} \right)\left( {a + 4} \right)}}{{\left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right)}} \times \dfrac{{\left( {2a + 1} \right)\left( {a - 2} \right)}}{{\left( {2a + 1} \right)\left( {a + 4} \right)}} \div \dfrac{{\left( {3a + 1} \right)\left( {a - 4} \right)}}{{\left( {{a^2} + 4 + 2a} \right)}}...........\left( 2 \right) \\
$
Now we know if we convert division into multiplication, then numerator and denominator will interchange, therefore equation 2 can be written as
\[\Rightarrow \dfrac{{\left( {a - 4} \right)\left( {a + 4} \right)}}{{\left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right)}} \times \dfrac{{\left( {2a + 1} \right)\left( {a - 2} \right)}}{{\left( {2a + 1} \right)\left( {a + 4} \right)}} \times \dfrac{{\left( {{a^2} + 4 + 2a} \right)}}{{\left( {3a + 1} \right)\left( {a - 4} \right)}} \\
\]
Now as we see all terms are cancel out only one term is remaining which is \[\dfrac{1}{{\left( {3a + 1} \right)}}\]
\[ \Rightarrow \dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}} = \dfrac{1}{{\left( {3a + 1} \right)}}\]
So, this is the required simplification.
Note: - In these types of questions the key concept is to use the formula of $\left( {{a^2} - {b^2}} \right)$ and $\left( {{a^3} - {b^3}} \right)$ to simplify the given expression to get the required result.
$
\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) \\
\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right) \\
$
Given equation is
\[\dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}}..................\left( 1 \right)\]
Now, simplify the terms in the expression using the formulas given in the hint,
$
\Rightarrow \left( {{a^2} - 16} \right) = \left( {{a^2} - {4^2}} \right) = \left( {a - 4} \right)\left( {a + 4} \right) \\
\Rightarrow \left( {{a^3} - 8} \right) = \left( {{a^3} - {2^3}} \right) = \left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right) \\
$
Now, factorize the remaining terms of the expression
$
\Rightarrow \left( {2{a^2} - 3a - 2} \right) = \left( {2{a^2} - 4a + a - 2} \right) = 2a\left( {a - 2} \right) + 1\left( {a - 2} \right) = \left( {2a + 1} \right)\left( {a - 2} \right) \\
\Rightarrow \left( {2{a^2} + 9a + 4} \right) = \left( {2{a^2} + 8a + a + 4} \right) = 2a\left( {a + 4} \right) + 1\left( {a + 4} \right) = \left( {2a + 1} \right)\left( {a + 4} \right) \\
\Rightarrow \left( {3{a^2} - 11a - 4} \right) = \left( {3{a^2} - 12a + a - 4} \right) = 3a\left( {a - 4} \right) + 1\left( {a - 4} \right) = \left( {3a + 1} \right)\left( {a - 4} \right) \\
$
Substitute those in equation 1
$
\Rightarrow \dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}} \\
\Rightarrow \dfrac{{\left( {a - 4} \right)\left( {a + 4} \right)}}{{\left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right)}} \times \dfrac{{\left( {2a + 1} \right)\left( {a - 2} \right)}}{{\left( {2a + 1} \right)\left( {a + 4} \right)}} \div \dfrac{{\left( {3a + 1} \right)\left( {a - 4} \right)}}{{\left( {{a^2} + 4 + 2a} \right)}}...........\left( 2 \right) \\
$
Now we know if we convert division into multiplication, then numerator and denominator will interchange, therefore equation 2 can be written as
\[\Rightarrow \dfrac{{\left( {a - 4} \right)\left( {a + 4} \right)}}{{\left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right)}} \times \dfrac{{\left( {2a + 1} \right)\left( {a - 2} \right)}}{{\left( {2a + 1} \right)\left( {a + 4} \right)}} \times \dfrac{{\left( {{a^2} + 4 + 2a} \right)}}{{\left( {3a + 1} \right)\left( {a - 4} \right)}} \\
\]
Now as we see all terms are cancel out only one term is remaining which is \[\dfrac{1}{{\left( {3a + 1} \right)}}\]
\[ \Rightarrow \dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}} = \dfrac{1}{{\left( {3a + 1} \right)}}\]
So, this is the required simplification.
Note: - In these types of questions the key concept is to use the formula of $\left( {{a^2} - {b^2}} \right)$ and $\left( {{a^3} - {b^3}} \right)$ to simplify the given expression to get the required result.
Recently Updated Pages
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Chahalgani means ATurkish noble under Iltutmish BSlaves class 10 social science CBSE