Answer
Verified
434.7k+ views
Hint: csc stands for cosec. $ \cos ec\left( x \right) $ is a trigonometric function and is reciprocal of $ \sin \left( x \right) $ . $ \cos ec\left( x \right) $ can be defined as the ratio between hypotenuse and perpendicular to theta ( $ \theta $ ). $ \cot \left( x \right) $ is also a trigonometric function and is reciprocal to $ \tan \left( x \right) $ . $ \cot \left( x \right) $ can be defined as the ratio between base and perpendicular to theta ( $ \theta $ ). Both of these trigonometric functions are odd functions.
Complete step-by-step answer:
As we already know that both $ \cos ec\left( x \right) $ and $ \cot \left( x \right) $ are odd functions, which means that $ f\left( { - x} \right) = - f\left( x \right) $ . So, we can say that,
$ \Rightarrow \csc \left( { - x} \right) = - \csc \left( x \right) $ ---(1)
$ \Rightarrow \cot \left( { - x} \right) = - \cot \left( x \right) $ ---(2)
We are given that $ \dfrac{{\csc \left( { - x} \right)}}{{\cot \left( { - x} \right)}} $ ,
Using equation (1) and (2) in given question we get,
$ \Rightarrow \dfrac{{\csc \left( x \right)}}{{\cot \left( x \right)}} $ ---(3)
We know that $ \cos ec\left( x \right) $ is reciprocal of $ \sin \left( x \right) $ which means
$ \Rightarrow \csc \left( x \right) = \dfrac{1}{{\sin \left( x \right)}} $ ---(4)
And $ \cot \left( x \right) $ is the reciprocal of $ \tan \left( x \right) $ which means
$ \Rightarrow \cot \left( x \right) = \dfrac{{\cos \left( x \right)}}{{\sin \left( x \right)}} $ ---(5)
Now, substituting the values of equation (4) and (5) in equation (3), we get,
$
\Rightarrow \dfrac{{\dfrac{1}{{\sin \left( x \right)}}}}{{\dfrac{{\cos \left( x \right)}}{{\sin \left( x \right)}}}} \\
\Rightarrow \dfrac{1}{{\sin \left( x \right)}} \times \dfrac{{\sin \left( x \right)}}{{\cos \left( x \right)}} \;
$
$ \sin \left( x \right) $ cuts and cancels off and we get,
$ \Rightarrow \dfrac{1}{{\cos \left( x \right)}} $ ---(6)
We know that, $ \sec \left( x \right) $ is the reciprocal of $ \cos \left( x \right) $ which means that, $ \sec \left( x \right) = \dfrac{1}{{\cos \left( x \right)}} $ . Substituting the same in equation (6) and we get,
$ \Rightarrow \sec \left( x \right) $
Thus, $ \dfrac{{\csc \left( { - x} \right)}}{{\cot \left( { - x} \right)}} = \sec \left( x \right) $ .
So, the correct answer is “Sec x”.
Note: Before solving any trigonometric question, students should keep all the necessary trigonometric identities in their mind. This will help them to solve any question easily. Students should also remember that $ \cos ec\left( x \right) $ is not the inverse of $ \sin \left( x \right) $ and cannot be written as $ {\sin ^{ - 1}}x $ . The same applies to $ \sec \left( x \right) $ as well as $ \cot \left( x \right) $ . Students should keep in mind that $ \sec \left( x \right) $ is the reciprocal of $ \cos \left( x \right) $ , $ \cos ec\left( x \right) $ is the reciprocal of $ \sin \left( x \right) $ and $ \cot \left( x \right) $ is the reciprocal of $ \tan \left( x \right) $ . In addition to $ \cos ec\left( x \right) $ and $ \cot \le
Complete step-by-step answer:
As we already know that both $ \cos ec\left( x \right) $ and $ \cot \left( x \right) $ are odd functions, which means that $ f\left( { - x} \right) = - f\left( x \right) $ . So, we can say that,
$ \Rightarrow \csc \left( { - x} \right) = - \csc \left( x \right) $ ---(1)
$ \Rightarrow \cot \left( { - x} \right) = - \cot \left( x \right) $ ---(2)
We are given that $ \dfrac{{\csc \left( { - x} \right)}}{{\cot \left( { - x} \right)}} $ ,
Using equation (1) and (2) in given question we get,
$ \Rightarrow \dfrac{{\csc \left( x \right)}}{{\cot \left( x \right)}} $ ---(3)
We know that $ \cos ec\left( x \right) $ is reciprocal of $ \sin \left( x \right) $ which means
$ \Rightarrow \csc \left( x \right) = \dfrac{1}{{\sin \left( x \right)}} $ ---(4)
And $ \cot \left( x \right) $ is the reciprocal of $ \tan \left( x \right) $ which means
$ \Rightarrow \cot \left( x \right) = \dfrac{{\cos \left( x \right)}}{{\sin \left( x \right)}} $ ---(5)
Now, substituting the values of equation (4) and (5) in equation (3), we get,
$
\Rightarrow \dfrac{{\dfrac{1}{{\sin \left( x \right)}}}}{{\dfrac{{\cos \left( x \right)}}{{\sin \left( x \right)}}}} \\
\Rightarrow \dfrac{1}{{\sin \left( x \right)}} \times \dfrac{{\sin \left( x \right)}}{{\cos \left( x \right)}} \;
$
$ \sin \left( x \right) $ cuts and cancels off and we get,
$ \Rightarrow \dfrac{1}{{\cos \left( x \right)}} $ ---(6)
We know that, $ \sec \left( x \right) $ is the reciprocal of $ \cos \left( x \right) $ which means that, $ \sec \left( x \right) = \dfrac{1}{{\cos \left( x \right)}} $ . Substituting the same in equation (6) and we get,
$ \Rightarrow \sec \left( x \right) $
Thus, $ \dfrac{{\csc \left( { - x} \right)}}{{\cot \left( { - x} \right)}} = \sec \left( x \right) $ .
So, the correct answer is “Sec x”.
Note: Before solving any trigonometric question, students should keep all the necessary trigonometric identities in their mind. This will help them to solve any question easily. Students should also remember that $ \cos ec\left( x \right) $ is not the inverse of $ \sin \left( x \right) $ and cannot be written as $ {\sin ^{ - 1}}x $ . The same applies to $ \sec \left( x \right) $ as well as $ \cot \left( x \right) $ . Students should keep in mind that $ \sec \left( x \right) $ is the reciprocal of $ \cos \left( x \right) $ , $ \cos ec\left( x \right) $ is the reciprocal of $ \sin \left( x \right) $ and $ \cot \left( x \right) $ is the reciprocal of $ \tan \left( x \right) $ . In addition to $ \cos ec\left( x \right) $ and $ \cot \le
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
10 examples of friction in our daily life
Can anyone list 10 advantages and disadvantages of friction