How do you simplify ${\left( {\dfrac{2}{5}} \right)^{ - 2}}$ and write it using only positive exponents?
Answer
Verified
435.3k+ views
Hint: To simplify a fraction with negative exponents and represent it with positive exponents, one can simply take the reciprocal of the fraction and remove the negative sign from the exponent. For further simplification, multiply the numerator and denominator with itself as the exponent is 2.
Step by step solution:
To simplify the fraction, we need to convert the negative exponent to positive.
As we know that a negative exponent can be written as positive by writing it in the denominator with numerator as 1 i.e., ${a^{ - b}} = \dfrac{1}{{{a^b}}}$
Applying the above formula here,
$\Rightarrow {\left( {\dfrac{2}{5}} \right)^{ - 2}} = \dfrac{1}{{{{\left( {\dfrac{2}{5}} \right)}^2}}}$
Now, opening the parenthesis on the right-hand side and writing the exponent separately with numerator and denominator,
$\Rightarrow {\left( {\dfrac{2}{5}} \right)^{ - 2}} = \dfrac{1}{{\dfrac{{{2^2}}}{{{5^2}}}}}$
Now, we know that a denominator’s denominator can be written in the numerator. Applying the rule here, we get
$\Rightarrow {\left( {\dfrac{2}{5}} \right)^{ - 2}} = \dfrac{{{5^2}}}{{{2^2}}}$
This is the simplified version with positive exponents
Now, simplifying further and multiplying the numerator and denominator with itself as the exponent is 2
$\Rightarrow {\left( {\dfrac{2}{5}} \right)^{ - 2}} = \dfrac{{5 \times 5}}{{2 \times 2}}$
$\Rightarrow {\left( {\dfrac{2}{5}} \right)^{ - 2}} = \dfrac{{25}}{4}$
Thus, the final answer after simplification is $\dfrac{{25}}{4}$.
Note:
It is important to note that a fraction with a negative exponent is just a reciprocal of the fraction with a positive exponent. Also, the exponent means a repeated multiplication of the base. As the exponent here is 2, we will multiply the fraction twice. If the exponent was 3, we multiply the fraction thrice.
Step by step solution:
To simplify the fraction, we need to convert the negative exponent to positive.
As we know that a negative exponent can be written as positive by writing it in the denominator with numerator as 1 i.e., ${a^{ - b}} = \dfrac{1}{{{a^b}}}$
Applying the above formula here,
$\Rightarrow {\left( {\dfrac{2}{5}} \right)^{ - 2}} = \dfrac{1}{{{{\left( {\dfrac{2}{5}} \right)}^2}}}$
Now, opening the parenthesis on the right-hand side and writing the exponent separately with numerator and denominator,
$\Rightarrow {\left( {\dfrac{2}{5}} \right)^{ - 2}} = \dfrac{1}{{\dfrac{{{2^2}}}{{{5^2}}}}}$
Now, we know that a denominator’s denominator can be written in the numerator. Applying the rule here, we get
$\Rightarrow {\left( {\dfrac{2}{5}} \right)^{ - 2}} = \dfrac{{{5^2}}}{{{2^2}}}$
This is the simplified version with positive exponents
Now, simplifying further and multiplying the numerator and denominator with itself as the exponent is 2
$\Rightarrow {\left( {\dfrac{2}{5}} \right)^{ - 2}} = \dfrac{{5 \times 5}}{{2 \times 2}}$
$\Rightarrow {\left( {\dfrac{2}{5}} \right)^{ - 2}} = \dfrac{{25}}{4}$
Thus, the final answer after simplification is $\dfrac{{25}}{4}$.
Note:
It is important to note that a fraction with a negative exponent is just a reciprocal of the fraction with a positive exponent. Also, the exponent means a repeated multiplication of the base. As the exponent here is 2, we will multiply the fraction twice. If the exponent was 3, we multiply the fraction thrice.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
When people say No pun intended what does that mea class 8 english CBSE
Which king started the organization of the Kumbh fair class 8 social science CBSE
Advantages and disadvantages of science
What is BLO What is the full form of BLO class 8 social science CBSE
Write a letter to the Municipal Commissioner to inform class 8 english CBSE
List some examples of Rabi and Kharif crops class 8 biology CBSE