Answer
Verified
429.6k+ views
Hint: A square root of a number $'x'$ is number $'y'$ that ${{y}^{2}}=x$ in other words, a number $'y'$ whose square is $X-$ For example $4$ and $-4$ are square roots of $16$ because ${{4}^{2}}={{\left( -4 \right)}^{2}}=16$
Factorisation is defined as breaking or decomposition of an entity (for example a number, a matrix, or a polynomial) into a product of another entity or factors, which when multiplied together given the original number or matrix, etc.
Example: $24=4\times 6$
$4$ and $6$ are the factors of $24.$
Complete step by step solution:
As per the problem square root of $10$ times square root of $6.$
Here, square root of $10$ is represented by $\sqrt{10}$ and square root of $6$ is represented by $\sqrt{6}$ and times is represented by $'X'$ multiplication.
Therefore the representation of statement is,
$\Rightarrow \sqrt{10}\times \sqrt{6}$
Here, you can multiply $10$ by $6.$
$=\sqrt{60}$
To factorize the $60$. This method can be adopted.
Factors of $60$ are $2\times 2\times \,3\times 5.$
Therefore you can write in this form.
$=\sqrt{2\times 2\times 3\times 5}$
$2\times 2=4$ or ${{2}^{2}}=4$ as you can write ${{2}^{2}}$ on the place of $2\times 2$
$=\sqrt{{{2}^{2}}\times 3\times 5}$
Here, apply rule of $\sqrt{{{a}^{2}}}=a$ means you can write $\sqrt{{{2}^{2}}}=2$
Therefore the modified equation will be,
$=2\sqrt{3\times 5}$
$=2\sqrt{15}$
Hence the simplification of square root of $10$ times square root of $6$ is $2\sqrt{15}$
Additional Information:
When you have a root square root for example in the denominator of a friction you can ‘remove’ it multiplying and dividing the fraction for the same quantity. The idea is to avoid the rational number in the denominator.
Consider $\dfrac{3}{\sqrt{2}}$
You can remove the square root by multiplying and dividing by $\sqrt{2}$
$\dfrac{3}{\sqrt{2}}\dfrac{\sqrt{2}}{\sqrt{2}}$
The operation does not change the value of you fraction because $\dfrac{\sqrt{2}}{\sqrt{2}}=1$ anyway and you fraction does not change by multiplying $1$ to it.
Now you can multiply in the numerator and denominator.
$\dfrac{3}{\sqrt{2}}.\dfrac{\sqrt{2}}{\sqrt{2}}=\dfrac{3\sqrt{2}}{\left( \sqrt{2} \right).\left( \sqrt{2} \right)}=\dfrac{3\sqrt{2}}{2}$
Note: Multiplication and division radicals
$\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}$
$\sqrt{a}\times \sqrt{b}=\sqrt{a\times b}$
Or $\sqrt{a}\sqrt{b}=\sqrt{a\times b}$
Remember that you can multiply the two separate square root terms. Factorization can be done by using LCM method also.
Write $2\times 2={{2}^{2}}$
Apply rule $\sqrt{{{a}^{2}}}=a$
Factorisation is defined as breaking or decomposition of an entity (for example a number, a matrix, or a polynomial) into a product of another entity or factors, which when multiplied together given the original number or matrix, etc.
Example: $24=4\times 6$
$4$ and $6$ are the factors of $24.$
Complete step by step solution:
As per the problem square root of $10$ times square root of $6.$
Here, square root of $10$ is represented by $\sqrt{10}$ and square root of $6$ is represented by $\sqrt{6}$ and times is represented by $'X'$ multiplication.
Therefore the representation of statement is,
$\Rightarrow \sqrt{10}\times \sqrt{6}$
Here, you can multiply $10$ by $6.$
$=\sqrt{60}$
To factorize the $60$. This method can be adopted.
Factors of $60$ are $2\times 2\times \,3\times 5.$
Therefore you can write in this form.
$=\sqrt{2\times 2\times 3\times 5}$
$2\times 2=4$ or ${{2}^{2}}=4$ as you can write ${{2}^{2}}$ on the place of $2\times 2$
$=\sqrt{{{2}^{2}}\times 3\times 5}$
Here, apply rule of $\sqrt{{{a}^{2}}}=a$ means you can write $\sqrt{{{2}^{2}}}=2$
Therefore the modified equation will be,
$=2\sqrt{3\times 5}$
$=2\sqrt{15}$
Hence the simplification of square root of $10$ times square root of $6$ is $2\sqrt{15}$
Additional Information:
When you have a root square root for example in the denominator of a friction you can ‘remove’ it multiplying and dividing the fraction for the same quantity. The idea is to avoid the rational number in the denominator.
Consider $\dfrac{3}{\sqrt{2}}$
You can remove the square root by multiplying and dividing by $\sqrt{2}$
$\dfrac{3}{\sqrt{2}}\dfrac{\sqrt{2}}{\sqrt{2}}$
The operation does not change the value of you fraction because $\dfrac{\sqrt{2}}{\sqrt{2}}=1$ anyway and you fraction does not change by multiplying $1$ to it.
Now you can multiply in the numerator and denominator.
$\dfrac{3}{\sqrt{2}}.\dfrac{\sqrt{2}}{\sqrt{2}}=\dfrac{3\sqrt{2}}{\left( \sqrt{2} \right).\left( \sqrt{2} \right)}=\dfrac{3\sqrt{2}}{2}$
Note: Multiplication and division radicals
$\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}$
$\sqrt{a}\times \sqrt{b}=\sqrt{a\times b}$
Or $\sqrt{a}\sqrt{b}=\sqrt{a\times b}$
Remember that you can multiply the two separate square root terms. Factorization can be done by using LCM method also.
Write $2\times 2={{2}^{2}}$
Apply rule $\sqrt{{{a}^{2}}}=a$
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE