Answer
Verified
396.9k+ views
Hint: In the above expression, $\omega $ is the cube root of unity. And we know that a cube of $\omega $ is equal to 1 which will look as follows: ${{\omega }^{3}}=1$. Also, we know that sum of 1, $\omega $ and square of $\omega $ is equal to 0 and the mathematical expression for this addition will look as follows: $1+\omega +{{\omega }^{2}}=0$. Now, to simplify the above expression, we are going to write the powers of $\omega $ in the form of ${{\omega }^{3}}$ so that we can write and then simplify using basic algebra.
Complete step-by-step solution:
The expression given in the above problem is as follows:
$\left( 1-\omega \right)\left( 1-{{\omega }^{2}} \right)\left( 1-{{\omega }^{4}} \right)\left( 1-{{\omega }^{8}} \right)$
In the above expression, $\omega $ is the cube root of unity and the mathematical form of this cube root of unity is as follows:
$\omega ={{\left( 1 \right)}^{\dfrac{1}{3}}}$
Cubing both the sides of the above equation we get,
${{\omega }^{3}}=1$
Also, there is a relation of the cube root of unity as follows:
$1+\omega +{{\omega }^{2}}=0$
Now, we are going to rearrange the given expression by writing ${{\omega }^{4}}={{\omega }^{3}}\left( \omega \right)$ and ${{\omega }^{8}}={{\omega }^{6}}\left( {{\omega }^{2}} \right)$ in the above expression and we get,
$\left( 1-\omega \right)\left( 1-{{\omega }^{2}} \right)\left( 1-{{\omega }^{3}}\left( \omega \right) \right)\left( 1-{{\omega }^{6}}\left( {{\omega }^{2}} \right) \right)$ ……… (1)
We have shown above that the cube of the cube root of unity is equal to 1.
${{\omega }^{3}}=1$
Now, taking square on both the sides of the above equation we get,
$\begin{align}
& {{\left( {{\omega }^{3}} \right)}^{2}}={{\left( 1 \right)}^{2}} \\
& \Rightarrow {{\omega }^{6}}=1 \\
\end{align}$
Using the above relation in eq. (1) we get,
$\begin{align}
& \left( 1-\omega \right)\left( 1-{{\omega }^{2}} \right)\left( 1-\left( 1 \right)\left( \omega \right) \right)\left( 1-\left( 1 \right)\left( {{\omega }^{2}} \right) \right) \\
& =\left( 1-\omega \right)\left( 1-{{\omega }^{2}} \right)\left( 1-\omega \right)\left( 1-{{\omega }^{2}} \right) \\
& ={{\left( 1-\omega \right)}^{2}}{{\left( 1-{{\omega }^{2}} \right)}^{2}} \\
\end{align}$
Rearranging the powers in the above expression we get,
${{\left( \left( 1-\omega \right)\left( 1-{{\omega }^{2}} \right) \right)}^{2}}$
Multiplying $\left( 1-\omega \right)\And \left( 1-{{\omega }^{2}} \right)$ in the above expression and we get,
$\begin{align}
& {{\left( 1-{{\omega }^{2}}-\omega +{{\omega }^{3}} \right)}^{2}} \\
& ={{\left( 1-\left( {{\omega }^{2}}+\omega \right)+{{\omega }^{3}} \right)}^{2}}.......(3) \\
\end{align}$
In the above, we have shown that:
$1+\omega +{{\omega }^{2}}=0$
Subtracting 1 on both the sides we get,
$\omega +{{\omega }^{2}}=-1$
Using the above relation in eq. (3) we get,
$\begin{align}
& {{\left( 1-\left( -1 \right)+1 \right)}^{2}} \\
& ={{\left( 1+1+1 \right)}^{2}} \\
& ={{3}^{2}}=9 \\
\end{align}$
From the above solution, we have solved the given expression to 9.
Hence, the simplification of the above expression is equal to 9.
Note: To solve the above problem, you must know the properties of the cube root of unity otherwise you cannot solve this problem so make sure you have a good understanding of this concept of the cube root of unity. Also, don’t make any calculation mistakes in the above problem.
Complete step-by-step solution:
The expression given in the above problem is as follows:
$\left( 1-\omega \right)\left( 1-{{\omega }^{2}} \right)\left( 1-{{\omega }^{4}} \right)\left( 1-{{\omega }^{8}} \right)$
In the above expression, $\omega $ is the cube root of unity and the mathematical form of this cube root of unity is as follows:
$\omega ={{\left( 1 \right)}^{\dfrac{1}{3}}}$
Cubing both the sides of the above equation we get,
${{\omega }^{3}}=1$
Also, there is a relation of the cube root of unity as follows:
$1+\omega +{{\omega }^{2}}=0$
Now, we are going to rearrange the given expression by writing ${{\omega }^{4}}={{\omega }^{3}}\left( \omega \right)$ and ${{\omega }^{8}}={{\omega }^{6}}\left( {{\omega }^{2}} \right)$ in the above expression and we get,
$\left( 1-\omega \right)\left( 1-{{\omega }^{2}} \right)\left( 1-{{\omega }^{3}}\left( \omega \right) \right)\left( 1-{{\omega }^{6}}\left( {{\omega }^{2}} \right) \right)$ ……… (1)
We have shown above that the cube of the cube root of unity is equal to 1.
${{\omega }^{3}}=1$
Now, taking square on both the sides of the above equation we get,
$\begin{align}
& {{\left( {{\omega }^{3}} \right)}^{2}}={{\left( 1 \right)}^{2}} \\
& \Rightarrow {{\omega }^{6}}=1 \\
\end{align}$
Using the above relation in eq. (1) we get,
$\begin{align}
& \left( 1-\omega \right)\left( 1-{{\omega }^{2}} \right)\left( 1-\left( 1 \right)\left( \omega \right) \right)\left( 1-\left( 1 \right)\left( {{\omega }^{2}} \right) \right) \\
& =\left( 1-\omega \right)\left( 1-{{\omega }^{2}} \right)\left( 1-\omega \right)\left( 1-{{\omega }^{2}} \right) \\
& ={{\left( 1-\omega \right)}^{2}}{{\left( 1-{{\omega }^{2}} \right)}^{2}} \\
\end{align}$
Rearranging the powers in the above expression we get,
${{\left( \left( 1-\omega \right)\left( 1-{{\omega }^{2}} \right) \right)}^{2}}$
Multiplying $\left( 1-\omega \right)\And \left( 1-{{\omega }^{2}} \right)$ in the above expression and we get,
$\begin{align}
& {{\left( 1-{{\omega }^{2}}-\omega +{{\omega }^{3}} \right)}^{2}} \\
& ={{\left( 1-\left( {{\omega }^{2}}+\omega \right)+{{\omega }^{3}} \right)}^{2}}.......(3) \\
\end{align}$
In the above, we have shown that:
$1+\omega +{{\omega }^{2}}=0$
Subtracting 1 on both the sides we get,
$\omega +{{\omega }^{2}}=-1$
Using the above relation in eq. (3) we get,
$\begin{align}
& {{\left( 1-\left( -1 \right)+1 \right)}^{2}} \\
& ={{\left( 1+1+1 \right)}^{2}} \\
& ={{3}^{2}}=9 \\
\end{align}$
From the above solution, we have solved the given expression to 9.
Hence, the simplification of the above expression is equal to 9.
Note: To solve the above problem, you must know the properties of the cube root of unity otherwise you cannot solve this problem so make sure you have a good understanding of this concept of the cube root of unity. Also, don’t make any calculation mistakes in the above problem.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE