Answer
Verified
431.7k+ views
Hint:In the given question, we are required to find the value of inverse of the square of the expression $\left( {3{x^2}{y^3}} \right)$. Given is a bracket with an expression involving two variables, x and y. So, we have to evaluate the inverse of the square of the term. Square is nothing but multiplying the same number with itself. So we will multiply the bracket with itself. Then each individual term in the first bracket is multiplied with that in the second term. Then if needed any mathematical operations, those will be performed. Or else we can use the standard and important identities used for expansion. Like those used in squaring or cubing. Those are the algebraic identities that come in significant use when solving such questions.
Complete step by step answer:
Given that: ${\left( {3{x^2}{y^3}} \right)^{ - 2}}$. So, we have to find the inverse of the square of the expression $\left( {3{x^2}{y^3}} \right)$.
Firstly, We have to evaluate the square of the expression and then find the inverse of the obtained result. So, we get,
${\left( {3{x^2}{y^3}} \right)^2} = \left( {9{x^4}{y^6}} \right)$
Now, we have to find the inverse of the obtained expression to get the required final result.Inverse of an expression is reciprocal of the expression.So, Inverse of $\left( {9{x^4}{y^6}} \right)$ is $\dfrac{1}{{9{x^4}{y^6}}}$.
So, the expression ${\left( {3{x^2}{y^3}} \right)^{ - 2}}$ given to us can be simplified as $\dfrac{1}{{9{x^4}{y^6}}}$.
Note: In this problem we are taking the inverse of square of a term. After that when we are simplifying the product we have added the terms with the same coefficient. If we are asked to find the cube of the term then we take the same and multiply the term three times. There are various important identities that help us in finding the square and cube expansion of the same problem directly.
Complete step by step answer:
Given that: ${\left( {3{x^2}{y^3}} \right)^{ - 2}}$. So, we have to find the inverse of the square of the expression $\left( {3{x^2}{y^3}} \right)$.
Firstly, We have to evaluate the square of the expression and then find the inverse of the obtained result. So, we get,
${\left( {3{x^2}{y^3}} \right)^2} = \left( {9{x^4}{y^6}} \right)$
Now, we have to find the inverse of the obtained expression to get the required final result.Inverse of an expression is reciprocal of the expression.So, Inverse of $\left( {9{x^4}{y^6}} \right)$ is $\dfrac{1}{{9{x^4}{y^6}}}$.
So, the expression ${\left( {3{x^2}{y^3}} \right)^{ - 2}}$ given to us can be simplified as $\dfrac{1}{{9{x^4}{y^6}}}$.
Note: In this problem we are taking the inverse of square of a term. After that when we are simplifying the product we have added the terms with the same coefficient. If we are asked to find the cube of the term then we take the same and multiply the term three times. There are various important identities that help us in finding the square and cube expansion of the same problem directly.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE