Answer
Verified
497.1k+ views
Hint- Here, we will proceed by using the concepts that when two numbers having the same bases are multiplied and divided, their powers will be added and subtracted respectively in order to simplify the given expression.
Complete step-by-step answer:
Let us denote the given expression by a i.e., \[a = {\left( {\dfrac{{2{x^3}{y^2}}}{{3{x^2}{y^5}}}} \right)^4} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right)\]
\[
\Rightarrow a = \dfrac{{{{\left( {2{x^3}{y^2}} \right)}^4}}}{{{{\left( {3{x^2}{y^5}} \right)}^4}}} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \dfrac{{{{\left( 2 \right)}^4}{{\left( {{x^3}} \right)}^4}{{\left( {{y^2}} \right)}^4}}}{{{{\left( 3 \right)}^4}{{\left( {{x^2}} \right)}^4}{{\left( {{y^5}} \right)}^4}}} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right){\text{ }} \to {\text{(1)}} \\
\]
As we know that for any number a, \[{\left( {{a^b}} \right)^c} = {a^{b \times c}}\]
Also, \[{\left( 2 \right)^4} = 16\] and \[{\left( 3 \right)^4} = 81\]
By using the formula \[{\left( {{a^b}} \right)^c} = {a^{b \times c}}\] and putting \[{\left( 2 \right)^4} = 16\], \[{\left( 3 \right)^4} = 81\], equation (1) becomes
\[
\Rightarrow a = \left( {\dfrac{{16{x^{3 \times 4}}{y^{2 \times 4}}}}{{81{x^{2 \times 4}}{y^{5 \times 4}}}}} \right) \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \left( {\dfrac{{16{x^{12}}{y^8}}}{{81{x^8}{y^{20}}}}} \right) \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \left[ {\dfrac{{\left( {16{x^{12}}{y^8}} \right)\left( {{x^2}{y^2}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( {12} \right)}}} \right] \\
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{12}} \times {x^2}} \right)\left( {{y^8} \times {y^2}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( 3 \right)}}} \right]{\text{ }} \to {\text{(2)}} \\
\]
Also we know that when two numbers such that their bases are same are multiplied with each other then, their powers will be added i.e., ${a^b} \times {a^c} = {a^{b + c}}$.
Using the above concept, equation (2) becomes
\[
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{12 + 2}}} \right)\left( {{y^{8 + 2}}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( 3 \right)}}} \right] \\
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{14}}} \right)\left( {{y^{10}}} \right)}}{{243{x^8}{y^{20}}}}} \right] \\
\Rightarrow a = \left[ {\left( {\dfrac{4}{{243}}} \right)\left( {\dfrac{{{x^{14}}}}{{{x^8}}}} \right)\left( {\dfrac{{{y^{10}}}}{{{y^{20}}}}} \right)} \right]{\text{ }} \to {\text{(3)}} \\
\]
Also we know that when two numbers such that their bases are same are divided then, their powers will be subtracted i.e., $\left( {\dfrac{{{a^b}}}{{{a^c}}}} \right) = {a^{b - c}}$.
Using the above concept, equation (3) becomes
\[
\Rightarrow a = \left[ {\left( {\dfrac{4}{{243}}} \right)\left( {{x^{14 - 8}}} \right)\left( {{y^{10 - 20}}} \right)} \right] \\
\Rightarrow a = \left( {\dfrac{4}{{243}}} \right)\left( {{x^6}} \right)\left( {{y^{ - 10}}} \right) \\
\Rightarrow a = \dfrac{{4{x^6}}}{{243{y^{10}}}} \\
\]
Therefore, the given expression \[{\left( {\dfrac{{2{x^3}{y^2}}}{{3{x^2}{y^5}}}} \right)^4} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right)\] is simplified to \[\dfrac{{4{x^6}}}{{243{y^{10}}}}\].
Note- In this particular problem, \[\left( {{x^{12}} \times {x^2}} \right) = {x^{14}}\] because here both the terms \[{x^{12}}\] and \[{x^2}\] have the same base (i.e., x) and are multiplied with each other so their powers will be added. Also, \[\left( {{y^8} \times {y^2}} \right) = {y^{10}}\] because here both the terms \[{y^8}\] and \[{y^2}\] have the same base (i.e., y) and are multiplied with each other so their powers will be added.
Complete step-by-step answer:
Let us denote the given expression by a i.e., \[a = {\left( {\dfrac{{2{x^3}{y^2}}}{{3{x^2}{y^5}}}} \right)^4} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right)\]
\[
\Rightarrow a = \dfrac{{{{\left( {2{x^3}{y^2}} \right)}^4}}}{{{{\left( {3{x^2}{y^5}} \right)}^4}}} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \dfrac{{{{\left( 2 \right)}^4}{{\left( {{x^3}} \right)}^4}{{\left( {{y^2}} \right)}^4}}}{{{{\left( 3 \right)}^4}{{\left( {{x^2}} \right)}^4}{{\left( {{y^5}} \right)}^4}}} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right){\text{ }} \to {\text{(1)}} \\
\]
As we know that for any number a, \[{\left( {{a^b}} \right)^c} = {a^{b \times c}}\]
Also, \[{\left( 2 \right)^4} = 16\] and \[{\left( 3 \right)^4} = 81\]
By using the formula \[{\left( {{a^b}} \right)^c} = {a^{b \times c}}\] and putting \[{\left( 2 \right)^4} = 16\], \[{\left( 3 \right)^4} = 81\], equation (1) becomes
\[
\Rightarrow a = \left( {\dfrac{{16{x^{3 \times 4}}{y^{2 \times 4}}}}{{81{x^{2 \times 4}}{y^{5 \times 4}}}}} \right) \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \left( {\dfrac{{16{x^{12}}{y^8}}}{{81{x^8}{y^{20}}}}} \right) \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \left[ {\dfrac{{\left( {16{x^{12}}{y^8}} \right)\left( {{x^2}{y^2}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( {12} \right)}}} \right] \\
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{12}} \times {x^2}} \right)\left( {{y^8} \times {y^2}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( 3 \right)}}} \right]{\text{ }} \to {\text{(2)}} \\
\]
Also we know that when two numbers such that their bases are same are multiplied with each other then, their powers will be added i.e., ${a^b} \times {a^c} = {a^{b + c}}$.
Using the above concept, equation (2) becomes
\[
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{12 + 2}}} \right)\left( {{y^{8 + 2}}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( 3 \right)}}} \right] \\
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{14}}} \right)\left( {{y^{10}}} \right)}}{{243{x^8}{y^{20}}}}} \right] \\
\Rightarrow a = \left[ {\left( {\dfrac{4}{{243}}} \right)\left( {\dfrac{{{x^{14}}}}{{{x^8}}}} \right)\left( {\dfrac{{{y^{10}}}}{{{y^{20}}}}} \right)} \right]{\text{ }} \to {\text{(3)}} \\
\]
Also we know that when two numbers such that their bases are same are divided then, their powers will be subtracted i.e., $\left( {\dfrac{{{a^b}}}{{{a^c}}}} \right) = {a^{b - c}}$.
Using the above concept, equation (3) becomes
\[
\Rightarrow a = \left[ {\left( {\dfrac{4}{{243}}} \right)\left( {{x^{14 - 8}}} \right)\left( {{y^{10 - 20}}} \right)} \right] \\
\Rightarrow a = \left( {\dfrac{4}{{243}}} \right)\left( {{x^6}} \right)\left( {{y^{ - 10}}} \right) \\
\Rightarrow a = \dfrac{{4{x^6}}}{{243{y^{10}}}} \\
\]
Therefore, the given expression \[{\left( {\dfrac{{2{x^3}{y^2}}}{{3{x^2}{y^5}}}} \right)^4} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right)\] is simplified to \[\dfrac{{4{x^6}}}{{243{y^{10}}}}\].
Note- In this particular problem, \[\left( {{x^{12}} \times {x^2}} \right) = {x^{14}}\] because here both the terms \[{x^{12}}\] and \[{x^2}\] have the same base (i.e., x) and are multiplied with each other so their powers will be added. Also, \[\left( {{y^8} \times {y^2}} \right) = {y^{10}}\] because here both the terms \[{y^8}\] and \[{y^2}\] have the same base (i.e., y) and are multiplied with each other so their powers will be added.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE