Answer
Verified
431.7k+ views
Hint: In this type of question we try to remove the radical by rationalizing the fraction. So we have to multiply and divide the given fraction with a number to make the denominator, which is a radicand (a number under a radical sign), a rational number.
Complete step-by-step solution:
The expression given in the question is $\dfrac{6}{{\sqrt 2 }}$
We simply have to ‘Rationalize’ this number.
Rationalization (Root Rationalization): A process in which radicals of an algebraic fraction are removed by making the denominator rational.
In simple terms, the denominator should not be an irrational number and to make it rational we do this process known as rationalization.
To make the denominator rational in this problem, we have to multiply $\sqrt 2 $by itself so that the radical gets cancelled out i.e.
$\sqrt 2 \times \sqrt 2 = {(\sqrt 2 )^2} = 2$
And here 2 is a rational number.
Applying this process to the given expression
$\dfrac{6}{{\sqrt 2 }} \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }} = \dfrac{{6\sqrt 2 }}{2}$
Hence, this result is the simplified form of the given expression.
Note:There is no problem with an irrational denominator but to make the fraction in simpler form, rationalization is required. When the denominator has more than one element for example, $\sqrt 2 + 1,\;\sqrt 3 - 1,\sqrt 5 + \sqrt 2 $etc. then there is another way to make it rational. To do so, we multiply both the top and bottom of the fraction by Conjugate (Two similar terms with opposite sign between its elements) of the denominator e.g. $x + 1\;{\text{and}}\;x - 1$are conjugates.
So to simplify an expression like $\dfrac{1}{{5 - \sqrt 3 }}$ we proceed like this:
$\Rightarrow \dfrac{1}{{5 - \sqrt 3 }} \times \dfrac{{5 + \sqrt 3 }}{{5 + \sqrt 3 }}$
Here $5 + \sqrt 3 $is the conjugate of$5 - \sqrt 3 $
$\Rightarrow \dfrac{{5 + \sqrt 3 }}{{(5 - \sqrt 3 ) \times (5 + \sqrt 3 )}}$
Here we use the formula in the denominator will be
$(a - b) \times (a + b) = {a^2} - {b^2}$
So we have
$\Rightarrow \dfrac{{5 + \sqrt 3 }}{{25 - 3}} = \dfrac{{5 + \sqrt 3 }}{{22}}$
This is the simplified form of $\dfrac{1}{{5 - \sqrt 3 }}$
Complete step-by-step solution:
The expression given in the question is $\dfrac{6}{{\sqrt 2 }}$
We simply have to ‘Rationalize’ this number.
Rationalization (Root Rationalization): A process in which radicals of an algebraic fraction are removed by making the denominator rational.
In simple terms, the denominator should not be an irrational number and to make it rational we do this process known as rationalization.
To make the denominator rational in this problem, we have to multiply $\sqrt 2 $by itself so that the radical gets cancelled out i.e.
$\sqrt 2 \times \sqrt 2 = {(\sqrt 2 )^2} = 2$
And here 2 is a rational number.
Applying this process to the given expression
$\dfrac{6}{{\sqrt 2 }} \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }} = \dfrac{{6\sqrt 2 }}{2}$
Hence, this result is the simplified form of the given expression.
Note:There is no problem with an irrational denominator but to make the fraction in simpler form, rationalization is required. When the denominator has more than one element for example, $\sqrt 2 + 1,\;\sqrt 3 - 1,\sqrt 5 + \sqrt 2 $etc. then there is another way to make it rational. To do so, we multiply both the top and bottom of the fraction by Conjugate (Two similar terms with opposite sign between its elements) of the denominator e.g. $x + 1\;{\text{and}}\;x - 1$are conjugates.
So to simplify an expression like $\dfrac{1}{{5 - \sqrt 3 }}$ we proceed like this:
$\Rightarrow \dfrac{1}{{5 - \sqrt 3 }} \times \dfrac{{5 + \sqrt 3 }}{{5 + \sqrt 3 }}$
Here $5 + \sqrt 3 $is the conjugate of$5 - \sqrt 3 $
$\Rightarrow \dfrac{{5 + \sqrt 3 }}{{(5 - \sqrt 3 ) \times (5 + \sqrt 3 )}}$
Here we use the formula in the denominator will be
$(a - b) \times (a + b) = {a^2} - {b^2}$
So we have
$\Rightarrow \dfrac{{5 + \sqrt 3 }}{{25 - 3}} = \dfrac{{5 + \sqrt 3 }}{{22}}$
This is the simplified form of $\dfrac{1}{{5 - \sqrt 3 }}$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE