Answer
Verified
430.2k+ views
Hint: We can simplify the given expression by multiplying each component present in the first parenthesis to components present in the second parenthesis.. The obtained expression will then have to be written in the standard form which is \[a{{x}^{2}}+bx+c\], and this will be the required form of the expression.
Complete step-by-step solution:
According to the question given we have to simplify, to begin with we will start with opening the parenthesis and multiplying each component with another.
So we have,
\[(2x-5)(x+4)\]
\[\Rightarrow 2x(x+4)-5(x+4)\]
So we have opened the parenthesis of \[(2x-5)\], so that each component gets multiplied to the component in the adjoining parenthesis.
Now, we will multiply \[2x\] with \[(x+4)\] as well as \[5\] with \[(x+4)\], we get
\[\Rightarrow (2{{x}^{2}}+8x)-(5x+20)\]
Multiplication produced an entity with the power of x as 2, so the obtained equation is a quadratic equation.
Now, we will open up the brackets and the negative sign before \[(5x+20)\] will cause a sign reversal and similar terms getting reduced.
We get,
\[\Rightarrow 2{{x}^{2}}+8x-5x-20\]
Subtracting \[8x-5x\], we get the equation as
\[\Rightarrow 2{{x}^{2}}+3x-20\]
The standard form of a quadratic equation is \[a{{x}^{2}}+bx+c\], where ‘a’, ‘b’ and ‘c’ is a constant and ‘a’ is not equal to zero.
So the simplified expression in the standard form:
\[2{{x}^{2}}+3x-20\]
Note: we can also simplify in the way as follows:
\[(2x-5)(x+4)\]
We can convert this in the form, \[(x+a)(x+b)\], then we can use the formula \[(x+a)(x+b)={{x}^{2}}+(a+b)x+ab\]
Taking 2 common from \[(2x-5)\], we get
\[\Rightarrow 2\left( x-\dfrac{5}{2} \right)(x+4)\]
\[\Rightarrow 2\left( x+\left( -\dfrac{5}{2} \right) \right)(x+4)\]
Applying the formula \[(x+a)(x+b)={{x}^{2}}+(a+b)x+ab\], we have
\[\Rightarrow 2\left( {{x}^{2}}+\left( \left( -\dfrac{5}{2} \right)+4 \right)x+\left( -\dfrac{5}{2} \right)\times 4 \right)\]
\[\Rightarrow 2\left( {{x}^{2}}+\left( \dfrac{-5+8}{2} \right)x+\left( -\dfrac{5\times 4}{2} \right) \right)\]
\[\Rightarrow 2\left( {{x}^{2}}+\left( \dfrac{3}{2} \right)x+\left( -\dfrac{20}{2} \right) \right)\]
Multiplying 2 with the entire equation we obtained, we then have
\[\Rightarrow 2{{x}^{2}}+3x-20\]
Therefore, the required simplified form of the expression in the standard form is \[2{{x}^{2}}+3x-20\].
Complete step-by-step solution:
According to the question given we have to simplify, to begin with we will start with opening the parenthesis and multiplying each component with another.
So we have,
\[(2x-5)(x+4)\]
\[\Rightarrow 2x(x+4)-5(x+4)\]
So we have opened the parenthesis of \[(2x-5)\], so that each component gets multiplied to the component in the adjoining parenthesis.
Now, we will multiply \[2x\] with \[(x+4)\] as well as \[5\] with \[(x+4)\], we get
\[\Rightarrow (2{{x}^{2}}+8x)-(5x+20)\]
Multiplication produced an entity with the power of x as 2, so the obtained equation is a quadratic equation.
Now, we will open up the brackets and the negative sign before \[(5x+20)\] will cause a sign reversal and similar terms getting reduced.
We get,
\[\Rightarrow 2{{x}^{2}}+8x-5x-20\]
Subtracting \[8x-5x\], we get the equation as
\[\Rightarrow 2{{x}^{2}}+3x-20\]
The standard form of a quadratic equation is \[a{{x}^{2}}+bx+c\], where ‘a’, ‘b’ and ‘c’ is a constant and ‘a’ is not equal to zero.
So the simplified expression in the standard form:
\[2{{x}^{2}}+3x-20\]
Note: we can also simplify in the way as follows:
\[(2x-5)(x+4)\]
We can convert this in the form, \[(x+a)(x+b)\], then we can use the formula \[(x+a)(x+b)={{x}^{2}}+(a+b)x+ab\]
Taking 2 common from \[(2x-5)\], we get
\[\Rightarrow 2\left( x-\dfrac{5}{2} \right)(x+4)\]
\[\Rightarrow 2\left( x+\left( -\dfrac{5}{2} \right) \right)(x+4)\]
Applying the formula \[(x+a)(x+b)={{x}^{2}}+(a+b)x+ab\], we have
\[\Rightarrow 2\left( {{x}^{2}}+\left( \left( -\dfrac{5}{2} \right)+4 \right)x+\left( -\dfrac{5}{2} \right)\times 4 \right)\]
\[\Rightarrow 2\left( {{x}^{2}}+\left( \dfrac{-5+8}{2} \right)x+\left( -\dfrac{5\times 4}{2} \right) \right)\]
\[\Rightarrow 2\left( {{x}^{2}}+\left( \dfrac{3}{2} \right)x+\left( -\dfrac{20}{2} \right) \right)\]
Multiplying 2 with the entire equation we obtained, we then have
\[\Rightarrow 2{{x}^{2}}+3x-20\]
Therefore, the required simplified form of the expression in the standard form is \[2{{x}^{2}}+3x-20\].
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers