Answer
Verified
498.6k+ views
Hint: Think of changing or converting ‘sin’ to ‘cos’ and ‘tan’ to ‘cot’ respectively by using the identities $\sin \left( 90-\theta \right)=\cos \theta $ and $\tan \left( 90-\theta \right)=\cot \theta $. First try to prove it by using identities
\[\sin \left( A-B \right)\text{ }=\sin A\cos B\cos A\sin B\] and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Complete step-by-step answer:
In the given question we have to express $\left( \sin {{81}^{\circ }}+\tan {{81}^{\circ }} \right)$ in term of angles between ${{0}^{\circ }}$ and ${{45}^{\circ }}$ so that the value of expression also does not changes.
We will find out by using identity $\sin \left( 90-\theta \right)=\cos \theta $ and $\tan \left( 90-\theta \right)=\cot \theta $ to convert the angles between ${{0}^{\circ }}$and ${{45}^{\circ }}$ .
First we will prove the identity $\sin \left( 90-\theta \right)=\cos \theta $ by using formula \[\sin \left( A-B \right)\text{ }=\sin A\cos B\cos A\sin B\].
Now substituting \[A={{90}^{\circ }}\] and $B=\theta ,$ we get,
$\sin \left( 90-\theta \right)=\sin {{90}^{\circ }}\cos \theta -\cos 90\sin \theta $
Here we will put $\sin {{90}^{\circ }}=1$ and $\cos {{90}^{\circ }}=0$ we get,
$\sin \left( 90-\theta \right)=\cos \theta $
Now we will prove that identity $\tan \left( 90-\theta \right)=\cot \theta $
As we know that,
$\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }$
So now we will replace $\alpha $ by $\left( 90-\theta \right)$ we get,
$\tan \left( 90-\theta \right)=\dfrac{\sin \left( 90-\theta \right)}{\cos \left( 90-\theta \right)}$
Now in this we will use identities $\sin \left( 90-\theta \right)=\cos \theta $and$\cos \left( 90-\theta \right)=\sin \theta $and substituting it we get,
$\tan \left( 90-\theta \right)=\dfrac{\cos \theta }{\sin \theta }=\cot \theta $
So now applying the identities we get,
$\begin{align}
& \sin \left( {{81}^{\circ }} \right)+\tan \left( {{81}^{\circ }} \right) \\
& =\sin \left( 90-9 \right)+\tan \left( 90-9 \right) \\
& =\cos 9+\cot 9. \\
\end{align}$
Hence, the expression $\sin \left( {{81}^{\circ }} \right)+\tan \left( {{81}^{\circ }} \right)$ can be expressed as $\cos {{9}^{\circ }}+\cot {{9}^{\circ }}$ for the angle to be in between ${{0}^{\circ }}$ and ${{45}^{\circ }}$.
So, the correct answer is option (d).
Note: Students are always in dilemma on how to approach these kinds of problems. They can do these kind of problems by using an easy method, that is just converting ‘sin’ to ‘cos’, ‘tan’ to ‘cot’ and ‘sec’ to ‘cosec’ ratios by using the identities $\sin \left( 90-\theta \right)=\cos \theta ,\tan \left( 90-\theta \right)=\cot \theta ,\sec \left( 90-\theta \right)=\csc \theta $ or vice-versa.
\[\sin \left( A-B \right)\text{ }=\sin A\cos B\cos A\sin B\] and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Complete step-by-step answer:
In the given question we have to express $\left( \sin {{81}^{\circ }}+\tan {{81}^{\circ }} \right)$ in term of angles between ${{0}^{\circ }}$ and ${{45}^{\circ }}$ so that the value of expression also does not changes.
We will find out by using identity $\sin \left( 90-\theta \right)=\cos \theta $ and $\tan \left( 90-\theta \right)=\cot \theta $ to convert the angles between ${{0}^{\circ }}$and ${{45}^{\circ }}$ .
First we will prove the identity $\sin \left( 90-\theta \right)=\cos \theta $ by using formula \[\sin \left( A-B \right)\text{ }=\sin A\cos B\cos A\sin B\].
Now substituting \[A={{90}^{\circ }}\] and $B=\theta ,$ we get,
$\sin \left( 90-\theta \right)=\sin {{90}^{\circ }}\cos \theta -\cos 90\sin \theta $
Here we will put $\sin {{90}^{\circ }}=1$ and $\cos {{90}^{\circ }}=0$ we get,
$\sin \left( 90-\theta \right)=\cos \theta $
Now we will prove that identity $\tan \left( 90-\theta \right)=\cot \theta $
As we know that,
$\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }$
So now we will replace $\alpha $ by $\left( 90-\theta \right)$ we get,
$\tan \left( 90-\theta \right)=\dfrac{\sin \left( 90-\theta \right)}{\cos \left( 90-\theta \right)}$
Now in this we will use identities $\sin \left( 90-\theta \right)=\cos \theta $and$\cos \left( 90-\theta \right)=\sin \theta $and substituting it we get,
$\tan \left( 90-\theta \right)=\dfrac{\cos \theta }{\sin \theta }=\cot \theta $
So now applying the identities we get,
$\begin{align}
& \sin \left( {{81}^{\circ }} \right)+\tan \left( {{81}^{\circ }} \right) \\
& =\sin \left( 90-9 \right)+\tan \left( 90-9 \right) \\
& =\cos 9+\cot 9. \\
\end{align}$
Hence, the expression $\sin \left( {{81}^{\circ }} \right)+\tan \left( {{81}^{\circ }} \right)$ can be expressed as $\cos {{9}^{\circ }}+\cot {{9}^{\circ }}$ for the angle to be in between ${{0}^{\circ }}$ and ${{45}^{\circ }}$.
So, the correct answer is option (d).
Note: Students are always in dilemma on how to approach these kinds of problems. They can do these kind of problems by using an easy method, that is just converting ‘sin’ to ‘cos’, ‘tan’ to ‘cot’ and ‘sec’ to ‘cosec’ ratios by using the identities $\sin \left( 90-\theta \right)=\cos \theta ,\tan \left( 90-\theta \right)=\cot \theta ,\sec \left( 90-\theta \right)=\csc \theta $ or vice-versa.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE