Answer
Verified
414k+ views
Hint: Express ${{270}^{\circ }}\text{ into }\left( {{270}^{\circ }}+\theta \right)$ . Then we should use the following two identities for sin and cosine respectively, $\sin \left( {{270}^{\circ }}+\theta \right)=-\cos \theta \text{ and }\cos \left( {{270}^{\circ }}+\theta \right)=\sin \theta $ . To find the tangent, we must remember that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ . In case the value of tangent is undefined, verify using the graph of $y=\tan \theta \text{ at }\theta ={{270}^{\circ }}$ to check whether it is $+\infty \text{ or }-\infty $ .
Complete step by step solution:
For sine of 270 degrees:
We can write ${{270}^{\circ }}\text{ as }\left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ . Or, in equation form
$\sin \left( {{270}^{\circ }} \right)=\sin \left( {{270}^{\circ }}+{{0}^{\circ }} \right)...\left( i \right)$
We know the trigonometric identity $\sin \left( {{270}^{\circ }}+\theta \right)=-\cos \theta $.
If we put $\theta ={{0}^{\circ }}$ and keep in mind the fact that $\cos {{0}^{\circ }}=1$ , we get
$\sin \left( {{270}^{\circ }}+{{0}^{\circ }} \right)=-\cos {{0}^{\circ }}=-1...\left( ii \right)$
Now substituting the value of $\sin \left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ in equation (i), we get
$\sin \left( {{270}^{\circ }} \right)=-1$
Hence, the sine of 270 degrees is -1.
For cosine of 270 degrees:
We can write ${{270}^{\circ }}\text{ as }\left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ . Or, in equation form
$\cos \left( {{270}^{\circ }} \right)=\cos \left( {{270}^{\circ }}+{{0}^{\circ }} \right)...\left( iii \right)$
We know the trigonometric identity $\cos \left( {{270}^{\circ }}+\theta \right)=\sin \theta $.
If we put $\theta ={{0}^{\circ }}$ and keep in mind the fact that $\sin {{0}^{\circ }}=0$ , we get
$\cos \left( {{270}^{\circ }}+{{0}^{\circ }} \right)=\sin {{0}^{\circ }}=0...\left( iv \right)$
Now substituting the value of $\cos \left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ in equation (iii), we get
$\cos \left( {{270}^{\circ }} \right)=0$
Hence, the cosine of 270 degrees is 0.
For tangent of 270 degrees:
We are well aware of the identity that
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Thus, we can write
$\tan {{270}^{\circ }}=\dfrac{\sin {{270}^{\circ }}}{\cos {{270}^{\circ }}}$
We can write ${{270}^{\circ }}\text{ as }\left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ . Or, in equation form
$\tan \left( {{270}^{\circ }}+{{0}^{\circ }} \right)=\dfrac{\sin \left( {{270}^{\circ }}+{{0}^{\circ }} \right)}{\cos \left( {{270}^{\circ }}+{{0}^{\circ }} \right)}$
We can now substitute the values of $\sin \left( {{270}^{\circ }}+{{0}^{\circ }} \right)\text{ and }\cos \left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ from equation (ii) and equation (iv) respectively. Thus, we have,
$\tan \left( {{270}^{\circ }}+{{0}^{\circ }} \right)=\dfrac{-1}{0}$ , which is N.D. or undefined.
Now, to check whether the value is $+\infty \text{ or }-\infty $ , we should use the graph of $y=\tan \left( x \right)\text{ at }x={{270}^{\circ }}$
From this graph, we can clearly see that $y=\tan \left( x \right)\text{ approaches }+\infty \text{ at }x={{270}^{\circ }}$ .
\[\therefore \tan \left( {{270}^{\circ }} \right)=+\infty \]
Hence, the tangent of 270 degrees is positive infinity.
Note: We can express 270 degrees into multiple forms, such as, $\left( {{270}^{\circ }}+{{0}^{\circ }} \right),\left( {{180}^{\circ }}+{{90}^{\circ }} \right)\text{ or }\left( {{360}^{\circ }}-{{90}^{\circ }} \right)$ . All of these forms could be used separately to find the trigonometric values of ${{270}^{\circ }}$ . We should remember not to assume $\left( \dfrac{-1}{0} \right)\text{ as -}\infty $ when we are trying to find the tangent of ${{270}^{\circ }}$.
Complete step by step solution:
For sine of 270 degrees:
We can write ${{270}^{\circ }}\text{ as }\left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ . Or, in equation form
$\sin \left( {{270}^{\circ }} \right)=\sin \left( {{270}^{\circ }}+{{0}^{\circ }} \right)...\left( i \right)$
We know the trigonometric identity $\sin \left( {{270}^{\circ }}+\theta \right)=-\cos \theta $.
If we put $\theta ={{0}^{\circ }}$ and keep in mind the fact that $\cos {{0}^{\circ }}=1$ , we get
$\sin \left( {{270}^{\circ }}+{{0}^{\circ }} \right)=-\cos {{0}^{\circ }}=-1...\left( ii \right)$
Now substituting the value of $\sin \left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ in equation (i), we get
$\sin \left( {{270}^{\circ }} \right)=-1$
Hence, the sine of 270 degrees is -1.
For cosine of 270 degrees:
We can write ${{270}^{\circ }}\text{ as }\left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ . Or, in equation form
$\cos \left( {{270}^{\circ }} \right)=\cos \left( {{270}^{\circ }}+{{0}^{\circ }} \right)...\left( iii \right)$
We know the trigonometric identity $\cos \left( {{270}^{\circ }}+\theta \right)=\sin \theta $.
If we put $\theta ={{0}^{\circ }}$ and keep in mind the fact that $\sin {{0}^{\circ }}=0$ , we get
$\cos \left( {{270}^{\circ }}+{{0}^{\circ }} \right)=\sin {{0}^{\circ }}=0...\left( iv \right)$
Now substituting the value of $\cos \left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ in equation (iii), we get
$\cos \left( {{270}^{\circ }} \right)=0$
Hence, the cosine of 270 degrees is 0.
For tangent of 270 degrees:
We are well aware of the identity that
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Thus, we can write
$\tan {{270}^{\circ }}=\dfrac{\sin {{270}^{\circ }}}{\cos {{270}^{\circ }}}$
We can write ${{270}^{\circ }}\text{ as }\left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ . Or, in equation form
$\tan \left( {{270}^{\circ }}+{{0}^{\circ }} \right)=\dfrac{\sin \left( {{270}^{\circ }}+{{0}^{\circ }} \right)}{\cos \left( {{270}^{\circ }}+{{0}^{\circ }} \right)}$
We can now substitute the values of $\sin \left( {{270}^{\circ }}+{{0}^{\circ }} \right)\text{ and }\cos \left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ from equation (ii) and equation (iv) respectively. Thus, we have,
$\tan \left( {{270}^{\circ }}+{{0}^{\circ }} \right)=\dfrac{-1}{0}$ , which is N.D. or undefined.
Now, to check whether the value is $+\infty \text{ or }-\infty $ , we should use the graph of $y=\tan \left( x \right)\text{ at }x={{270}^{\circ }}$
From this graph, we can clearly see that $y=\tan \left( x \right)\text{ approaches }+\infty \text{ at }x={{270}^{\circ }}$ .
\[\therefore \tan \left( {{270}^{\circ }} \right)=+\infty \]
Hence, the tangent of 270 degrees is positive infinity.
Note: We can express 270 degrees into multiple forms, such as, $\left( {{270}^{\circ }}+{{0}^{\circ }} \right),\left( {{180}^{\circ }}+{{90}^{\circ }} \right)\text{ or }\left( {{360}^{\circ }}-{{90}^{\circ }} \right)$ . All of these forms could be used separately to find the trigonometric values of ${{270}^{\circ }}$ . We should remember not to assume $\left( \dfrac{-1}{0} \right)\text{ as -}\infty $ when we are trying to find the tangent of ${{270}^{\circ }}$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE