Sketch the graph for $ y = {\tan ^{ - 1}}(\tan x) $
Answer
Verified
457.2k+ views
Hint:
To sketch the graph of $ y = {\tan ^{ - 1}}(\tan x) $ . First, we have to calculate the domain and range of tanx and $ {\tan ^{ - 1}} $ . From this, we can sketch the graph of $ \tan x $ and $ {\tan ^{ - 1}} $ . With the help of these, we can draw a graph of $ y = {\tan ^{ - 1}}(\tan x) $
In a relation R from set A to set B, the set of all first components of order pair belongings to R is called the domain and all the second element of pair is called range.
Complete step by step solution:
We know that the domain of tan. function(tangent function) is the set $ \left\{ {x:x \in R,and.x \ne (2n + 1)\dfrac{\pi }{2},n \in Z} \right\} $
here R represents the real number and $ x \ne (2n + 1)\dfrac{\pi }{2} $ means the domain of tan function does not contain an odd multiple of $ \dfrac{\pi }{2} $ . $ n \in Z $ Represents that n is an integer. Z is the symbol of an integer.
The range of the tan function in R. Here R represents the real number. If we restrict the domain of a tangent function to $ \left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right) $ then it is one-one and onto with the range R. So, the tangent function is restricted to any of interval etc, is bijective and range is R. SO, $ {\tan ^{ - 1}} $ can be defined as the function whose domain is R and range could be any of interval $ \left( {\dfrac{{ - 3\pi }}{2},\dfrac{\pi }{2}} \right),\left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right),\left( {\dfrac{\pi }{2},\dfrac{{3\pi }}{2}} \right) $ and so on. This interval gives different branches of the function $ {\tan ^{ - 1}} $ . The branch $ \left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right) $ is called the principal value branch of the function $ {\tan ^{ - 1}} $ therefor $ {\tan ^{ - 1}}:R \to \left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right) $
The graph of a tan function $ y = \tan x $ is given as:
The graph of $ y = {\tan ^{ - 1}}x $ is given as
As $ y = {\tan ^{ - 1}}(\tan x) $ is periodic with period π. therefore to draw this graph we should draw the graph for one interval $ \pi $ and repeat for the entire value.
As we know that $ y = {\tan ^{ - 1}}(\tan x) $ = $ \left\{ {x:\dfrac{\pi }{2} < x < \dfrac{\pi }{2}} \right\} $
This has been defined for $ \dfrac{\pi }{2} < x < \dfrac{\pi }{2} $ that has a length $ \pi $ so its graph could be plotted as
Thus this graph of y where y is not defined for $ x \in (2n + 1)\dfrac{\pi }{2} $ .
Note:
One-one function: A function $ f:x \to y $ is defined as a one-one function of the image of distinct elements of X under $ f $ are distinct.
Onto function: A function is $ f:x \to y $ said to be onto the function of every element of Y is an image of some element of X under f.
Bijective Function: The function which is both one-one and onto is called the bijective function.
To sketch the graph of $ y = {\tan ^{ - 1}}(\tan x) $ . First, we have to calculate the domain and range of tanx and $ {\tan ^{ - 1}} $ . From this, we can sketch the graph of $ \tan x $ and $ {\tan ^{ - 1}} $ . With the help of these, we can draw a graph of $ y = {\tan ^{ - 1}}(\tan x) $
In a relation R from set A to set B, the set of all first components of order pair belongings to R is called the domain and all the second element of pair is called range.
Complete step by step solution:
We know that the domain of tan. function(tangent function) is the set $ \left\{ {x:x \in R,and.x \ne (2n + 1)\dfrac{\pi }{2},n \in Z} \right\} $
here R represents the real number and $ x \ne (2n + 1)\dfrac{\pi }{2} $ means the domain of tan function does not contain an odd multiple of $ \dfrac{\pi }{2} $ . $ n \in Z $ Represents that n is an integer. Z is the symbol of an integer.
The range of the tan function in R. Here R represents the real number. If we restrict the domain of a tangent function to $ \left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right) $ then it is one-one and onto with the range R. So, the tangent function is restricted to any of interval etc, is bijective and range is R. SO, $ {\tan ^{ - 1}} $ can be defined as the function whose domain is R and range could be any of interval $ \left( {\dfrac{{ - 3\pi }}{2},\dfrac{\pi }{2}} \right),\left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right),\left( {\dfrac{\pi }{2},\dfrac{{3\pi }}{2}} \right) $ and so on. This interval gives different branches of the function $ {\tan ^{ - 1}} $ . The branch $ \left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right) $ is called the principal value branch of the function $ {\tan ^{ - 1}} $ therefor $ {\tan ^{ - 1}}:R \to \left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right) $
The graph of a tan function $ y = \tan x $ is given as:
The graph of $ y = {\tan ^{ - 1}}x $ is given as
As $ y = {\tan ^{ - 1}}(\tan x) $ is periodic with period π. therefore to draw this graph we should draw the graph for one interval $ \pi $ and repeat for the entire value.
As we know that $ y = {\tan ^{ - 1}}(\tan x) $ = $ \left\{ {x:\dfrac{\pi }{2} < x < \dfrac{\pi }{2}} \right\} $
This has been defined for $ \dfrac{\pi }{2} < x < \dfrac{\pi }{2} $ that has a length $ \pi $ so its graph could be plotted as
Thus this graph of y where y is not defined for $ x \in (2n + 1)\dfrac{\pi }{2} $ .
Note:
One-one function: A function $ f:x \to y $ is defined as a one-one function of the image of distinct elements of X under $ f $ are distinct.
Onto function: A function is $ f:x \to y $ said to be onto the function of every element of Y is an image of some element of X under f.
Bijective Function: The function which is both one-one and onto is called the bijective function.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
State the laws of reflection of light