Answer
Verified
499.2k+ views
Hint: Find the volume of both cuboid and cube then divide them to get the number of cubes.
Given the dimensions of the cuboid are \[60cm\times 54cm\times 30cm\]
where, length= 60cm, breadth= 54cm, height= 30cm
\[\therefore \]Volume of the cuboid is given by the formula (l\times b\times h)
\[\therefore \]Volume of cuboid \[=60cm\times 54cm\times 30cm\]
Volume of cuboid \[=\left( 60\times 54\times 30 \right)c{{m}^{3}}\]
The unit of volume here is \[c{{m}^{3}}\].
Here, the side of the cube is given as 6cm.
i.e. let ‘a’ be denoted as the side of the cube.
\[\therefore a=6cm\]
The volume of a cube \[={{a}^{3}}\]
\[\therefore \]Volume of the cube \[={{6}^{3}}=6\times 6\times 6c{{m}^{3}}\]
Here, we need to find the number of cubes that can be placed inside the cuboid of dimension \[60cm\times 54cm\times 30cm\].
The required number of cubes can be found by dividing the volume of the cuboid by volume of the smaller cube.
\[\therefore \]Required number of cubes\[=\dfrac{Volume\ of\ Cuboid}{volume\ of\ cube}\]
\[=\dfrac{\left( 60\times 54\times 30 \right)c{{m}^{3}}}{\left( 6\times 6\times 6 \right)c{{m}^{3}}}\]
Simplifying the above by cancelling out like terms, we get \[=10\times 9\times 5=450\]
\[\therefore \]450 small cubes can be placed in the given cuboid.
Note: The formula of calculating volumes of both cuboids and cubes are different. In cuboids the sides are different, whereas in cubes all sides are the same. So, the number of cubes can be found by dividing the volumes of both.
Given the dimensions of the cuboid are \[60cm\times 54cm\times 30cm\]
where, length= 60cm, breadth= 54cm, height= 30cm
\[\therefore \]Volume of the cuboid is given by the formula (l\times b\times h)
\[\therefore \]Volume of cuboid \[=60cm\times 54cm\times 30cm\]
Volume of cuboid \[=\left( 60\times 54\times 30 \right)c{{m}^{3}}\]
The unit of volume here is \[c{{m}^{3}}\].
Here, the side of the cube is given as 6cm.
i.e. let ‘a’ be denoted as the side of the cube.
\[\therefore a=6cm\]
The volume of a cube \[={{a}^{3}}\]
\[\therefore \]Volume of the cube \[={{6}^{3}}=6\times 6\times 6c{{m}^{3}}\]
Here, we need to find the number of cubes that can be placed inside the cuboid of dimension \[60cm\times 54cm\times 30cm\].
The required number of cubes can be found by dividing the volume of the cuboid by volume of the smaller cube.
\[\therefore \]Required number of cubes\[=\dfrac{Volume\ of\ Cuboid}{volume\ of\ cube}\]
\[=\dfrac{\left( 60\times 54\times 30 \right)c{{m}^{3}}}{\left( 6\times 6\times 6 \right)c{{m}^{3}}}\]
Simplifying the above by cancelling out like terms, we get \[=10\times 9\times 5=450\]
\[\therefore \]450 small cubes can be placed in the given cuboid.
Note: The formula of calculating volumes of both cuboids and cubes are different. In cuboids the sides are different, whereas in cubes all sides are the same. So, the number of cubes can be found by dividing the volumes of both.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE