Solution containing \[0.73{\text{ }}g\] camphor (Molar mass $152gmo{l^{( - 1)}}$) in \[36.8{\text{ }}g\]of acetone (boiling point \[{56.3^ \circ }\] C boil at ${56.55^ \circ }$ C. A solution of \[0.564{\text{ }}g\] unknown compound in same weight of acetone boils at ${56.46^ \circ }$ C. Calculate the molar mass of the unknown compound.
Answer
Verified
482.4k+ views
Hint: As we all know about colligative properties and the method to determine Molar Mass then we will use that concept here. The first thing is that we need to keep in mind about the molality of a solution. Also, let’s keep in mind that the colligative properties include lowering of vapor pressure, the elevation of boiling point, depression of freezing point, and osmotic pressure.
Complete step by step answer:
Now, let’s calculate the elevation constant ${K_b}$ for camphor:
For that, we need to see all the given contents.
Mass of a solvent, ${W_A} = {\text{ }}36.8{\text{ }}g$
Mass of a solute, ${W_B} = {\text{ }}0.73{\text{ }}g$
And the molecular mass of a solute, ${M_b} = {\text{ }}152$
As we all know that the boiling point of an elevation is $\vartriangle {T_b}$ then let’s calculate the value of an elevation.
$\Delta {T_b}\; = {\text{ }}56.55{\text{ }}-{\text{ }}56.30$
$\Delta {T_b} = 0.25^\circ C$
Now, to calculate the value of ${K_b}$ we need to consider the formula of total elevation. So, let’s remind the formula first.
The formula of an elevation,
$\vartriangle {T_b} = {K_b} \times \dfrac{{{W_B} \times 1000}}{{{W_A} \times {M_b}}}$
Now, we’ll place the values of the respective abbreviations and then we will solve the formula to find the value of ${K_b}$
${K_B} = \dfrac{{\Delta {T_B} \times {W_A} \times {M_b}}}{{{W_B} \times 1000}}$
Now, we have the value of ${K_b}$so we will determine the value of it.
${K_b}$= $\dfrac{{0.25 \times 36.8 \times 152}}{{0.73 \times 1000}}$
${K_b}$= ${1.9156^ \circ }kgmo{l^{ - 1}}$
After calculating the value of ${K_b}$, we will refer to the other part of the question where we need to calculate the molecular mass of an unknown solute.
Again, we will note down all the given values and follow the same steps to calculate the value of ${M_b}$ i.e the mass of the unknown solute.
Mass of a solvent, ${W_A} = 36.8g$
Mass of a solute, ${W_B} = 0.564g$
So, again we find elevation in boiling point
$
\Delta {T_b} = 56.46 - 56.30 \\
\Delta {T_b} = {0.16^ \circ }C \\
$
Now, we will write the formula in terms of ${M_b}$ .
$\vartriangle {T_b} = {K_b} \times \dfrac{{{W_B} \times 1000}}{{{W_A} \times {M_B}}}$
${M_b} = \dfrac{{{K_b} \times {W_B} \times 1000}}{{{W_A} \times \Delta {T_b}}}$
Now, we will place the values of the given abbreviations to calculate the mass of unknown solute in grams.
$
{M_b} = \dfrac{{1.9156 \times 0.564 \times 1000}}{{36.8 \times 0.16}} \\
{M_b} = 183.4g \\
$
So, we have got the mass of an unknown solute as 183.4 g.
Note:
We must know that the camphor is terpene (organic compound) commonly utilized in creams, ointments, and lotions. Camphor is the oil extracted from the wood of camphor trees and processed by steam distillation. It is often used topically to alleviate pain, irritation, and itching. Camphor is additionally wont to relieve chest congestion and inflammatory conditions.
Complete step by step answer:
Now, let’s calculate the elevation constant ${K_b}$ for camphor:
For that, we need to see all the given contents.
Mass of a solvent, ${W_A} = {\text{ }}36.8{\text{ }}g$
Mass of a solute, ${W_B} = {\text{ }}0.73{\text{ }}g$
And the molecular mass of a solute, ${M_b} = {\text{ }}152$
As we all know that the boiling point of an elevation is $\vartriangle {T_b}$ then let’s calculate the value of an elevation.
$\Delta {T_b}\; = {\text{ }}56.55{\text{ }}-{\text{ }}56.30$
$\Delta {T_b} = 0.25^\circ C$
Now, to calculate the value of ${K_b}$ we need to consider the formula of total elevation. So, let’s remind the formula first.
The formula of an elevation,
$\vartriangle {T_b} = {K_b} \times \dfrac{{{W_B} \times 1000}}{{{W_A} \times {M_b}}}$
Now, we’ll place the values of the respective abbreviations and then we will solve the formula to find the value of ${K_b}$
${K_B} = \dfrac{{\Delta {T_B} \times {W_A} \times {M_b}}}{{{W_B} \times 1000}}$
Now, we have the value of ${K_b}$so we will determine the value of it.
${K_b}$= $\dfrac{{0.25 \times 36.8 \times 152}}{{0.73 \times 1000}}$
${K_b}$= ${1.9156^ \circ }kgmo{l^{ - 1}}$
After calculating the value of ${K_b}$, we will refer to the other part of the question where we need to calculate the molecular mass of an unknown solute.
Again, we will note down all the given values and follow the same steps to calculate the value of ${M_b}$ i.e the mass of the unknown solute.
Mass of a solvent, ${W_A} = 36.8g$
Mass of a solute, ${W_B} = 0.564g$
So, again we find elevation in boiling point
$
\Delta {T_b} = 56.46 - 56.30 \\
\Delta {T_b} = {0.16^ \circ }C \\
$
Now, we will write the formula in terms of ${M_b}$ .
$\vartriangle {T_b} = {K_b} \times \dfrac{{{W_B} \times 1000}}{{{W_A} \times {M_B}}}$
${M_b} = \dfrac{{{K_b} \times {W_B} \times 1000}}{{{W_A} \times \Delta {T_b}}}$
Now, we will place the values of the given abbreviations to calculate the mass of unknown solute in grams.
$
{M_b} = \dfrac{{1.9156 \times 0.564 \times 1000}}{{36.8 \times 0.16}} \\
{M_b} = 183.4g \\
$
So, we have got the mass of an unknown solute as 183.4 g.
Note:
We must know that the camphor is terpene (organic compound) commonly utilized in creams, ointments, and lotions. Camphor is the oil extracted from the wood of camphor trees and processed by steam distillation. It is often used topically to alleviate pain, irritation, and itching. Camphor is additionally wont to relieve chest congestion and inflammatory conditions.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The correct order of melting point of 14th group elements class 11 chemistry CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE
The combining capacity of an element is known as i class 11 chemistry CBSE
Find the image of the point 38 about the line x+3y class 11 maths CBSE