Answer
Verified
499.5k+ views
Hint : In order to solve this problem treat this series as an AP whose sum is 148 and common difference 5 and first term as 1.
The given series is
1 + 6 + 11 +….+ x = 148
We will treat it as an AP with first term, common difference, sum, and last term as 1,5,148 and x.
Here we have to find x.
As we know,
a = 1
d = 5
${{\text{S}}_n}$ = 148
Last term = x
We know the formula,
Last term = x = a + (n-1)d
So, by putting the values we have in above equation we get
x = 1 +5n – 5
x = 5n – 4
5n = x + 4
Therefore,
${\text{n = }}\dfrac{{{\text{x + 4}}}}{5}$ ……(i)
We have ${{\text{S}}_n}$ = 148,
And we know,
$
{{\text{S}}_n} = \dfrac{n}{2}({\text{a + last term}}) \\
{{\text{S}}_n} = \dfrac{n}{2}({\text{a + x}}) \\
$
From (i) we can say,
$148 = \dfrac{{{\text{x }} + \,\,4}}{{2(5)}}(1{\text{ + x}})$
Solving further we get,
$
1480 = {\text{(x + 4)(x + 1)}} \\
{\text{1480 = (}}{{\text{x}}^2}{\text{ + 5x + 4)}} \\
{{\text{x}}^2}{\text{ + 5x - 1476 = 0}} \\
$
Calculating the roots of above equation bye the formula,
$\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
So, we get,
$
{\text{x = }}\dfrac{{ - 5 \pm \sqrt {{5^2} - 4(1)( - 1480)} }}{{2(1)}} \\
{\text{x = }}\dfrac{{ - 5 \pm 77}}{2} \\
$
On solving it further we get ,
x = 36 when we take +77
x = -41 when we take -77
On observing the series the last term of it can never be negative so the one and only value of x is 36.
Therefore, x = 36.
Note – In these types of problems of series first we have to consider which series is given here, it may be AP, GP, HP etc. Then after considering, obtain the specific value with respect to the series. As here in this question we have considered the series as an AP whose first term, common difference, number of terms and sum is given and asked to find the value of last term which was given as a variable. Then after applying the general formula of nth term and sum of an AP we got a quadratic equation in terms of last term solving that gave us the value of last term.
The given series is
1 + 6 + 11 +….+ x = 148
We will treat it as an AP with first term, common difference, sum, and last term as 1,5,148 and x.
Here we have to find x.
As we know,
a = 1
d = 5
${{\text{S}}_n}$ = 148
Last term = x
We know the formula,
Last term = x = a + (n-1)d
So, by putting the values we have in above equation we get
x = 1 +5n – 5
x = 5n – 4
5n = x + 4
Therefore,
${\text{n = }}\dfrac{{{\text{x + 4}}}}{5}$ ……(i)
We have ${{\text{S}}_n}$ = 148,
And we know,
$
{{\text{S}}_n} = \dfrac{n}{2}({\text{a + last term}}) \\
{{\text{S}}_n} = \dfrac{n}{2}({\text{a + x}}) \\
$
From (i) we can say,
$148 = \dfrac{{{\text{x }} + \,\,4}}{{2(5)}}(1{\text{ + x}})$
Solving further we get,
$
1480 = {\text{(x + 4)(x + 1)}} \\
{\text{1480 = (}}{{\text{x}}^2}{\text{ + 5x + 4)}} \\
{{\text{x}}^2}{\text{ + 5x - 1476 = 0}} \\
$
Calculating the roots of above equation bye the formula,
$\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
So, we get,
$
{\text{x = }}\dfrac{{ - 5 \pm \sqrt {{5^2} - 4(1)( - 1480)} }}{{2(1)}} \\
{\text{x = }}\dfrac{{ - 5 \pm 77}}{2} \\
$
On solving it further we get ,
x = 36 when we take +77
x = -41 when we take -77
On observing the series the last term of it can never be negative so the one and only value of x is 36.
Therefore, x = 36.
Note – In these types of problems of series first we have to consider which series is given here, it may be AP, GP, HP etc. Then after considering, obtain the specific value with respect to the series. As here in this question we have considered the series as an AP whose first term, common difference, number of terms and sum is given and asked to find the value of last term which was given as a variable. Then after applying the general formula of nth term and sum of an AP we got a quadratic equation in terms of last term solving that gave us the value of last term.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE