
Solve $1 + {\sin ^3}x + {\cos ^3}x - \frac{3}{2}\sin 2x = 0$
Answer
606k+ views
Hint: Here, we will use the trigonometric formulas to simplify the given equation.
Given,
$1 + {\sin ^3}x + {\cos ^3}x - \frac{3}{2}\sin 2x = 0 \to (1)$
Now, let us simplify the equation (1) by substituting the formula of $\sin 2x$i.e.., $2\sin x\cos
x$.we get
$\begin{gathered}
\Rightarrow 1 + {\sin ^3}x + {\cos ^3}x - \frac{3}{2}\sin 2x = 0 \\
\Rightarrow 1 + {\sin ^3}x + {\cos ^3}x - \frac{3}{2}(2\sin x\cos x) = 0 \\
\Rightarrow 1 + {\sin ^3}x + {\cos ^3}x - 3\sin x\cos x = 0 \\
\Rightarrow 1 + {\sin ^3}x + {\cos ^3}x - 3(\sin x)(\cos x)(1) = 0 \to (2) \\
\end{gathered} $
As, we can see equation (2) is in the form of ${a^3} + {b^3} + {c^3} - 3abc = 0$where $a = 1,b
= \sin x,c = \cos x$
And we now that
$\begin{gathered}
{a^3} + {b^3} + {c^3} - 3abc = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ca) \\
\therefore (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ca) = 0 \\
\end{gathered} $
Here, we will consider the factor $a + b + c = 0$ as the other factor is non-zero. Hence, from
equation (2), we can write
$1 + \sin x + \cos x = 0 \to (3)$
Now, let us simplify equation (3) to find the values of ‘x’
$\begin{gathered}
\Rightarrow 1 + \sin x + \cos x = 0 \\
\Rightarrow \sin x + \cos x = - 1 \\
\end{gathered} $
Let us multiply the above equation with $\frac{1}{{\sqrt 2 }}$we get,
$\begin{gathered}
\Rightarrow \sin x + \cos x = - 1 \\
\Rightarrow (\frac{1}{{\sqrt 2 }})(\sin x + \cos x) = - \frac{1}{{\sqrt 2 }} \\
\Rightarrow \frac{1}{{\sqrt 2 }}(\sin x) + \frac{1}{{\sqrt 2 }}(\cos x) = - \frac{1}{{\sqrt 2 }} \\
\Rightarrow \sin x\sin (\frac{\pi }{4}) + (\cos x)\cos (\frac{\pi }{4}) = \cos (\frac{{3\pi }}{4}) \to (4)[\because \sin (\frac{\pi }{4}) = \frac{1}{{\sqrt 2 }},\cos (\frac{\pi }{4}) = \frac{1}{{\sqrt 2 }},\cos (\frac{{3\pi }}{4}) = - \frac{1}{{\sqrt 2 }}] \\
\end{gathered} $
As, we can see equation (4) is in the form of $\sin A\sin B + \cos A\cos B = \cos (A - B)$where
$A = x and B = \frac{\pi }{4}$.Now let us apply the formulae of$\sin A\sin B + \cos A\cos B$ we get
\[\begin{gathered}
\Rightarrow \cos (x - \frac{\pi }{4}) = \cos (\frac{{3\pi }}{4}) \\
\Rightarrow x - \frac{\pi }{4} = 2n\pi \pm \frac{{3\pi }}{4} \to (5),['n'{\text{is integral number]}} \\
\end{gathered} \]
Therefore, solving equation (5) we get,
$ \Rightarrow x = 2n\pi + \pi and x = 2n\pi - \frac{\pi }{2}['n'{\text{is integral number}}]$
Hence, the values of ‘x’ satisfying $1 + {\sin ^3}x + {\cos ^3}x - \frac{3}{2}\sin 2x = 0$is$x =
2n\pi + \pi and x = 2n\pi - \frac{\pi }{2}$.
Note: Here, we have added $'2n\pi '$to the $\frac{{3\pi }}{4}$after cancelling the cosine terms on the both sides as $'2\pi '$is the period of the cosine function and n is an integral
number.
Given,
$1 + {\sin ^3}x + {\cos ^3}x - \frac{3}{2}\sin 2x = 0 \to (1)$
Now, let us simplify the equation (1) by substituting the formula of $\sin 2x$i.e.., $2\sin x\cos
x$.we get
$\begin{gathered}
\Rightarrow 1 + {\sin ^3}x + {\cos ^3}x - \frac{3}{2}\sin 2x = 0 \\
\Rightarrow 1 + {\sin ^3}x + {\cos ^3}x - \frac{3}{2}(2\sin x\cos x) = 0 \\
\Rightarrow 1 + {\sin ^3}x + {\cos ^3}x - 3\sin x\cos x = 0 \\
\Rightarrow 1 + {\sin ^3}x + {\cos ^3}x - 3(\sin x)(\cos x)(1) = 0 \to (2) \\
\end{gathered} $
As, we can see equation (2) is in the form of ${a^3} + {b^3} + {c^3} - 3abc = 0$where $a = 1,b
= \sin x,c = \cos x$
And we now that
$\begin{gathered}
{a^3} + {b^3} + {c^3} - 3abc = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ca) \\
\therefore (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ca) = 0 \\
\end{gathered} $
Here, we will consider the factor $a + b + c = 0$ as the other factor is non-zero. Hence, from
equation (2), we can write
$1 + \sin x + \cos x = 0 \to (3)$
Now, let us simplify equation (3) to find the values of ‘x’
$\begin{gathered}
\Rightarrow 1 + \sin x + \cos x = 0 \\
\Rightarrow \sin x + \cos x = - 1 \\
\end{gathered} $
Let us multiply the above equation with $\frac{1}{{\sqrt 2 }}$we get,
$\begin{gathered}
\Rightarrow \sin x + \cos x = - 1 \\
\Rightarrow (\frac{1}{{\sqrt 2 }})(\sin x + \cos x) = - \frac{1}{{\sqrt 2 }} \\
\Rightarrow \frac{1}{{\sqrt 2 }}(\sin x) + \frac{1}{{\sqrt 2 }}(\cos x) = - \frac{1}{{\sqrt 2 }} \\
\Rightarrow \sin x\sin (\frac{\pi }{4}) + (\cos x)\cos (\frac{\pi }{4}) = \cos (\frac{{3\pi }}{4}) \to (4)[\because \sin (\frac{\pi }{4}) = \frac{1}{{\sqrt 2 }},\cos (\frac{\pi }{4}) = \frac{1}{{\sqrt 2 }},\cos (\frac{{3\pi }}{4}) = - \frac{1}{{\sqrt 2 }}] \\
\end{gathered} $
As, we can see equation (4) is in the form of $\sin A\sin B + \cos A\cos B = \cos (A - B)$where
$A = x and B = \frac{\pi }{4}$.Now let us apply the formulae of$\sin A\sin B + \cos A\cos B$ we get
\[\begin{gathered}
\Rightarrow \cos (x - \frac{\pi }{4}) = \cos (\frac{{3\pi }}{4}) \\
\Rightarrow x - \frac{\pi }{4} = 2n\pi \pm \frac{{3\pi }}{4} \to (5),['n'{\text{is integral number]}} \\
\end{gathered} \]
Therefore, solving equation (5) we get,
$ \Rightarrow x = 2n\pi + \pi and x = 2n\pi - \frac{\pi }{2}['n'{\text{is integral number}}]$
Hence, the values of ‘x’ satisfying $1 + {\sin ^3}x + {\cos ^3}x - \frac{3}{2}\sin 2x = 0$is$x =
2n\pi + \pi and x = 2n\pi - \frac{\pi }{2}$.
Note: Here, we have added $'2n\pi '$to the $\frac{{3\pi }}{4}$after cancelling the cosine terms on the both sides as $'2\pi '$is the period of the cosine function and n is an integral
number.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

