Answer
Verified
500.4k+ views
Hint: Here, we will use the trigonometric formulas to simplify the given equation.
Given,
$1 + {\sin ^3}x + {\cos ^3}x - \frac{3}{2}\sin 2x = 0 \to (1)$
Now, let us simplify the equation (1) by substituting the formula of $\sin 2x$i.e.., $2\sin x\cos
x$.we get
$\begin{gathered}
\Rightarrow 1 + {\sin ^3}x + {\cos ^3}x - \frac{3}{2}\sin 2x = 0 \\
\Rightarrow 1 + {\sin ^3}x + {\cos ^3}x - \frac{3}{2}(2\sin x\cos x) = 0 \\
\Rightarrow 1 + {\sin ^3}x + {\cos ^3}x - 3\sin x\cos x = 0 \\
\Rightarrow 1 + {\sin ^3}x + {\cos ^3}x - 3(\sin x)(\cos x)(1) = 0 \to (2) \\
\end{gathered} $
As, we can see equation (2) is in the form of ${a^3} + {b^3} + {c^3} - 3abc = 0$where $a = 1,b
= \sin x,c = \cos x$
And we now that
$\begin{gathered}
{a^3} + {b^3} + {c^3} - 3abc = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ca) \\
\therefore (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ca) = 0 \\
\end{gathered} $
Here, we will consider the factor $a + b + c = 0$ as the other factor is non-zero. Hence, from
equation (2), we can write
$1 + \sin x + \cos x = 0 \to (3)$
Now, let us simplify equation (3) to find the values of ‘x’
$\begin{gathered}
\Rightarrow 1 + \sin x + \cos x = 0 \\
\Rightarrow \sin x + \cos x = - 1 \\
\end{gathered} $
Let us multiply the above equation with $\frac{1}{{\sqrt 2 }}$we get,
$\begin{gathered}
\Rightarrow \sin x + \cos x = - 1 \\
\Rightarrow (\frac{1}{{\sqrt 2 }})(\sin x + \cos x) = - \frac{1}{{\sqrt 2 }} \\
\Rightarrow \frac{1}{{\sqrt 2 }}(\sin x) + \frac{1}{{\sqrt 2 }}(\cos x) = - \frac{1}{{\sqrt 2 }} \\
\Rightarrow \sin x\sin (\frac{\pi }{4}) + (\cos x)\cos (\frac{\pi }{4}) = \cos (\frac{{3\pi }}{4}) \to (4)[\because \sin (\frac{\pi }{4}) = \frac{1}{{\sqrt 2 }},\cos (\frac{\pi }{4}) = \frac{1}{{\sqrt 2 }},\cos (\frac{{3\pi }}{4}) = - \frac{1}{{\sqrt 2 }}] \\
\end{gathered} $
As, we can see equation (4) is in the form of $\sin A\sin B + \cos A\cos B = \cos (A - B)$where
$A = x and B = \frac{\pi }{4}$.Now let us apply the formulae of$\sin A\sin B + \cos A\cos B$ we get
\[\begin{gathered}
\Rightarrow \cos (x - \frac{\pi }{4}) = \cos (\frac{{3\pi }}{4}) \\
\Rightarrow x - \frac{\pi }{4} = 2n\pi \pm \frac{{3\pi }}{4} \to (5),['n'{\text{is integral number]}} \\
\end{gathered} \]
Therefore, solving equation (5) we get,
$ \Rightarrow x = 2n\pi + \pi and x = 2n\pi - \frac{\pi }{2}['n'{\text{is integral number}}]$
Hence, the values of ‘x’ satisfying $1 + {\sin ^3}x + {\cos ^3}x - \frac{3}{2}\sin 2x = 0$is$x =
2n\pi + \pi and x = 2n\pi - \frac{\pi }{2}$.
Note: Here, we have added $'2n\pi '$to the $\frac{{3\pi }}{4}$after cancelling the cosine terms on the both sides as $'2\pi '$is the period of the cosine function and n is an integral
number.
Given,
$1 + {\sin ^3}x + {\cos ^3}x - \frac{3}{2}\sin 2x = 0 \to (1)$
Now, let us simplify the equation (1) by substituting the formula of $\sin 2x$i.e.., $2\sin x\cos
x$.we get
$\begin{gathered}
\Rightarrow 1 + {\sin ^3}x + {\cos ^3}x - \frac{3}{2}\sin 2x = 0 \\
\Rightarrow 1 + {\sin ^3}x + {\cos ^3}x - \frac{3}{2}(2\sin x\cos x) = 0 \\
\Rightarrow 1 + {\sin ^3}x + {\cos ^3}x - 3\sin x\cos x = 0 \\
\Rightarrow 1 + {\sin ^3}x + {\cos ^3}x - 3(\sin x)(\cos x)(1) = 0 \to (2) \\
\end{gathered} $
As, we can see equation (2) is in the form of ${a^3} + {b^3} + {c^3} - 3abc = 0$where $a = 1,b
= \sin x,c = \cos x$
And we now that
$\begin{gathered}
{a^3} + {b^3} + {c^3} - 3abc = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ca) \\
\therefore (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ca) = 0 \\
\end{gathered} $
Here, we will consider the factor $a + b + c = 0$ as the other factor is non-zero. Hence, from
equation (2), we can write
$1 + \sin x + \cos x = 0 \to (3)$
Now, let us simplify equation (3) to find the values of ‘x’
$\begin{gathered}
\Rightarrow 1 + \sin x + \cos x = 0 \\
\Rightarrow \sin x + \cos x = - 1 \\
\end{gathered} $
Let us multiply the above equation with $\frac{1}{{\sqrt 2 }}$we get,
$\begin{gathered}
\Rightarrow \sin x + \cos x = - 1 \\
\Rightarrow (\frac{1}{{\sqrt 2 }})(\sin x + \cos x) = - \frac{1}{{\sqrt 2 }} \\
\Rightarrow \frac{1}{{\sqrt 2 }}(\sin x) + \frac{1}{{\sqrt 2 }}(\cos x) = - \frac{1}{{\sqrt 2 }} \\
\Rightarrow \sin x\sin (\frac{\pi }{4}) + (\cos x)\cos (\frac{\pi }{4}) = \cos (\frac{{3\pi }}{4}) \to (4)[\because \sin (\frac{\pi }{4}) = \frac{1}{{\sqrt 2 }},\cos (\frac{\pi }{4}) = \frac{1}{{\sqrt 2 }},\cos (\frac{{3\pi }}{4}) = - \frac{1}{{\sqrt 2 }}] \\
\end{gathered} $
As, we can see equation (4) is in the form of $\sin A\sin B + \cos A\cos B = \cos (A - B)$where
$A = x and B = \frac{\pi }{4}$.Now let us apply the formulae of$\sin A\sin B + \cos A\cos B$ we get
\[\begin{gathered}
\Rightarrow \cos (x - \frac{\pi }{4}) = \cos (\frac{{3\pi }}{4}) \\
\Rightarrow x - \frac{\pi }{4} = 2n\pi \pm \frac{{3\pi }}{4} \to (5),['n'{\text{is integral number]}} \\
\end{gathered} \]
Therefore, solving equation (5) we get,
$ \Rightarrow x = 2n\pi + \pi and x = 2n\pi - \frac{\pi }{2}['n'{\text{is integral number}}]$
Hence, the values of ‘x’ satisfying $1 + {\sin ^3}x + {\cos ^3}x - \frac{3}{2}\sin 2x = 0$is$x =
2n\pi + \pi and x = 2n\pi - \frac{\pi }{2}$.
Note: Here, we have added $'2n\pi '$to the $\frac{{3\pi }}{4}$after cancelling the cosine terms on the both sides as $'2\pi '$is the period of the cosine function and n is an integral
number.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE