Answer
Verified
430.2k+ views
Hint: Use the method of elimination to solve this problem. To solve these types of equations, the first step you need to do is to eliminate one of the variables out. To do this, you must multiply each equation with a constant such that the resultant equation when added or subtracted gives only one equation in its equation. Here, we will multiply the first equation by 1 and the second one by 2. After that we will add those two new equations which will eliminate the variable x and give a value for y. Now put that value of y in equation 1 to get the required value of x.
Complete step-by-step solution:
The two fractions we have are
$2x + 3y = 6..........(1)$
And
$x + 2y = 5..........(2)$
Now, we know that to solve these types of problems, we need to eliminate one of the variables first.But how to do it?
You will need to multiply the first equation by and constant ‘a’ and the second equation ‘b’ such that any one of the unknown variables' coefficients becomes 0.
So, following the above steps, lets multiple equation (1) by 1 and equation (2) by 2
After doing this step, we get the modified equations as:-
$2x + 3y = 6..........(3)$
$2x + 4y = 10..........(4)$
Now, subtract equation (4) from equation (3)
We get,
$
(2x + 4y) - (2x + 3y) = 10 - 6 \\
\Rightarrow 2x + 4y - 2x - 3y = 4 \\
\Rightarrow y = 4 \\
$
Therefore, completing this step gave us the value of y as 4
Now putting the value of y in equation (1) we will get
$
2x + 3 \times 4 = 6 \\
\Rightarrow 2x + 12 = 6 \\
\Rightarrow 2x = - 6 \\
\Rightarrow x = \dfrac{{ - 6}}{2} \\
\Rightarrow x = - 3 \\
$
Hence, we got the value of x as -3.
So, the solution of the equations $2x + 3y = 6$ and $x + 2y = 5$is $x = - 3$ and $y = 4$
Note: The aim should always be to eliminate only one of the two variables. So, always multiply with such a constant so that you can easily eliminate one of the variables. Also, it is not necessary that you must add the two modified equations. You can also subtract them to get the answer. Use your operator, but make sure you eliminate one variable.
Complete step-by-step solution:
The two fractions we have are
$2x + 3y = 6..........(1)$
And
$x + 2y = 5..........(2)$
Now, we know that to solve these types of problems, we need to eliminate one of the variables first.But how to do it?
You will need to multiply the first equation by and constant ‘a’ and the second equation ‘b’ such that any one of the unknown variables' coefficients becomes 0.
So, following the above steps, lets multiple equation (1) by 1 and equation (2) by 2
After doing this step, we get the modified equations as:-
$2x + 3y = 6..........(3)$
$2x + 4y = 10..........(4)$
Now, subtract equation (4) from equation (3)
We get,
$
(2x + 4y) - (2x + 3y) = 10 - 6 \\
\Rightarrow 2x + 4y - 2x - 3y = 4 \\
\Rightarrow y = 4 \\
$
Therefore, completing this step gave us the value of y as 4
Now putting the value of y in equation (1) we will get
$
2x + 3 \times 4 = 6 \\
\Rightarrow 2x + 12 = 6 \\
\Rightarrow 2x = - 6 \\
\Rightarrow x = \dfrac{{ - 6}}{2} \\
\Rightarrow x = - 3 \\
$
Hence, we got the value of x as -3.
So, the solution of the equations $2x + 3y = 6$ and $x + 2y = 5$is $x = - 3$ and $y = 4$
Note: The aim should always be to eliminate only one of the two variables. So, always multiply with such a constant so that you can easily eliminate one of the variables. Also, it is not necessary that you must add the two modified equations. You can also subtract them to get the answer. Use your operator, but make sure you eliminate one variable.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE