Answer
Verified
429.6k+ views
Hint: We first need to rearrange the given equation in the standard form of quadratic equation. That is in the form of \[a{x^2} + bx + c = 0\]. After that we can solve this using various methods that are by completing the square, factorization, graph or by quadratic formula. Here we need to use a quadratic formula that is \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Complete step-by-step solution:
Given, \[7{x^2} - 5 = 2x + 9{x^2}\]
Shifting the terms we have,
\[2x + 9{x^2} - 7{x^2} + 5 = 0\]
\[2{x^2} - 2x + 5 = 0\]
Since the degree of the equation is 2, we have 2 factors or two roots.
On comparing the given equation with the standard quadratic equation\[a{x^2} + bx + c = 0\], we have\[a = 2\], \[b = - 2\] and \[c = 5\].
Now we use quadratic formula or Sridhar’s formula,
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Substituting we have,
\[ \Rightarrow x = \dfrac{{ - ( - 2) \pm \sqrt {{{\left( { - 2} \right)}^2} - 4(2)(5)} }}{{2(2)}}\]
\[ = \dfrac{{2 \pm \sqrt {4 - 40} }}{4}\]
\[ = \dfrac{{2 \pm \sqrt { - 36} }}{4}\]
\[ = \dfrac{{2 \pm \sqrt { - 1 \times 36} }}{4}\]
We know that \[\sqrt { - 1} = i\],
\[ = \dfrac{{2 \pm i\sqrt {36} }}{4}\]
We know that 36 is a perfect square,
\[ = \dfrac{{2 \pm 6i}}{4}\]
Taking 2 common,
\[ = \dfrac{{2(1 \pm 3i)}}{4}\]
\[ = \dfrac{{1 \pm 3i}}{2}\]
Thus we have two roots,
\[ \Rightarrow x = \dfrac{{1 + 3i}}{2}\] and \[x = \dfrac{{1 - 3i}}{2}\]. This is the required answer.
Note: Since we have a polynomial of degree two and hence it is called quadratic polynomial. If we have a polynomial of degree ‘n’ then we have ‘n’ roots. In the given problem we have a degree that is equal to 2. Hence the number of roots are 2. Also we know that \[\sqrt { - 1} \] is undefined and we take \[\sqrt { - 1} = i\] that is an imaginary number. Quadratic formula and Sridhar’s formula are both the same. We know that the product of two negative numbers gives us a positive number. Also keep in mind when shifting values from one side of the equation to another side of the equation, always change sign from positive to negative and vice-versa.
Complete step-by-step solution:
Given, \[7{x^2} - 5 = 2x + 9{x^2}\]
Shifting the terms we have,
\[2x + 9{x^2} - 7{x^2} + 5 = 0\]
\[2{x^2} - 2x + 5 = 0\]
Since the degree of the equation is 2, we have 2 factors or two roots.
On comparing the given equation with the standard quadratic equation\[a{x^2} + bx + c = 0\], we have\[a = 2\], \[b = - 2\] and \[c = 5\].
Now we use quadratic formula or Sridhar’s formula,
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Substituting we have,
\[ \Rightarrow x = \dfrac{{ - ( - 2) \pm \sqrt {{{\left( { - 2} \right)}^2} - 4(2)(5)} }}{{2(2)}}\]
\[ = \dfrac{{2 \pm \sqrt {4 - 40} }}{4}\]
\[ = \dfrac{{2 \pm \sqrt { - 36} }}{4}\]
\[ = \dfrac{{2 \pm \sqrt { - 1 \times 36} }}{4}\]
We know that \[\sqrt { - 1} = i\],
\[ = \dfrac{{2 \pm i\sqrt {36} }}{4}\]
We know that 36 is a perfect square,
\[ = \dfrac{{2 \pm 6i}}{4}\]
Taking 2 common,
\[ = \dfrac{{2(1 \pm 3i)}}{4}\]
\[ = \dfrac{{1 \pm 3i}}{2}\]
Thus we have two roots,
\[ \Rightarrow x = \dfrac{{1 + 3i}}{2}\] and \[x = \dfrac{{1 - 3i}}{2}\]. This is the required answer.
Note: Since we have a polynomial of degree two and hence it is called quadratic polynomial. If we have a polynomial of degree ‘n’ then we have ‘n’ roots. In the given problem we have a degree that is equal to 2. Hence the number of roots are 2. Also we know that \[\sqrt { - 1} \] is undefined and we take \[\sqrt { - 1} = i\] that is an imaginary number. Quadratic formula and Sridhar’s formula are both the same. We know that the product of two negative numbers gives us a positive number. Also keep in mind when shifting values from one side of the equation to another side of the equation, always change sign from positive to negative and vice-versa.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE