Answer
Verified
442.8k+ views
Hint: A linear equation is any equation that can be written in the form.
$ax + by + c = 0$
Where $a$ and $b$ are real numbers and $x,y$ are variables.
This form is sometimes called the standard form of a linear equation in two-variable.
If the equation contains any fractions use the least common denominator to clear the fractions we will do this by multiplying both sides of the equation by the L.C.D.
We shall draw the solution of such pairs of equations which are not linear but can be reduced to linear form by making some suitable substitution.
Complete step-by-step answer:
Given equation $\dfrac{2}{x} + \dfrac{3}{y} = 13$ and $\dfrac{5}{x} - \dfrac{4}{y} = - 2$ .
Here in given equations which are not is form of \[ax + by + c = 0\]. Firstly reduce it and form in \[ax + by + c = 0\]. So, we substitute $\dfrac{1}{x} = b$ and $\dfrac{1}{y} = q$ in both equations we get.
\[ \Rightarrow \]$2b + 3q = 13$ --------(i) and
\[ \Rightarrow \]$5b + 4q = - 2$ --------(ii)
Now, these equations is the form of $ab + 2q + c = 0$
where $p,q$ are variables.
We will use elimination method to solve the equation (i) and (ii)
Firstly, we should multiply (i) equation by $5$ and (ii) equation by $2$,
we get,
\[ \Rightarrow \]$10p + 15q = 65$ --------(iii) equation
And $10p - 8q = - 4$ --------(iv)
Now (iv) equation subtract form (iii) equation
\[ \Rightarrow \]$10p + 15q = 65 $
\[ \Rightarrow \]$10p - 8q = - 4$
\[ \Rightarrow \]$239 = 69$
After subtraction we get on the left hand side $23q$ and on the right hand side $69$.
After solving we get $q = \dfrac{{69}}{{23}}$
\[ \Rightarrow \]$q = 3$
Further but the value of $q$ in (ii) equation we get the value of $p$.
\[ \Rightarrow \]$2b + 3(3) = 13$
\[ \Rightarrow \]$2b + 9 = 13$
\[ \Rightarrow \]\[2b = 13 - 9\]
\[ \Rightarrow \]\[2b = 4\]
\[ \Rightarrow \]\[b = \dfrac{4}{2}\]
\[ \Rightarrow \]\[b = 2\]
Substitute the value of $p$ and $q$ we get,
$\dfrac{1}{x} = p$ and $\dfrac{1}{y} = q$
$i.e.$$\dfrac{1}{x} = 2$ $i.e.$$\dfrac{1}{2} = x$
$i.e.$ $\dfrac{1}{y} = 3$ $i.e.$ $\dfrac{1}{3} = y$
Therefore the value of $x = \dfrac{1}{2}$ and value of $x = \dfrac{1}{3}$.
Note: Be careful while processing simultaneous linear equations from mathematical problems.
- Make sure to remember how to solve simultaneous equations by the method of comparison and method of cross-multiplication.
$ax + by + c = 0$
Where $a$ and $b$ are real numbers and $x,y$ are variables.
This form is sometimes called the standard form of a linear equation in two-variable.
If the equation contains any fractions use the least common denominator to clear the fractions we will do this by multiplying both sides of the equation by the L.C.D.
We shall draw the solution of such pairs of equations which are not linear but can be reduced to linear form by making some suitable substitution.
Complete step-by-step answer:
Given equation $\dfrac{2}{x} + \dfrac{3}{y} = 13$ and $\dfrac{5}{x} - \dfrac{4}{y} = - 2$ .
Here in given equations which are not is form of \[ax + by + c = 0\]. Firstly reduce it and form in \[ax + by + c = 0\]. So, we substitute $\dfrac{1}{x} = b$ and $\dfrac{1}{y} = q$ in both equations we get.
\[ \Rightarrow \]$2b + 3q = 13$ --------(i) and
\[ \Rightarrow \]$5b + 4q = - 2$ --------(ii)
Now, these equations is the form of $ab + 2q + c = 0$
where $p,q$ are variables.
We will use elimination method to solve the equation (i) and (ii)
Firstly, we should multiply (i) equation by $5$ and (ii) equation by $2$,
we get,
\[ \Rightarrow \]$10p + 15q = 65$ --------(iii) equation
And $10p - 8q = - 4$ --------(iv)
Now (iv) equation subtract form (iii) equation
\[ \Rightarrow \]$10p + 15q = 65 $
\[ \Rightarrow \]$10p - 8q = - 4$
\[ \Rightarrow \]$239 = 69$
After subtraction we get on the left hand side $23q$ and on the right hand side $69$.
After solving we get $q = \dfrac{{69}}{{23}}$
\[ \Rightarrow \]$q = 3$
Further but the value of $q$ in (ii) equation we get the value of $p$.
\[ \Rightarrow \]$2b + 3(3) = 13$
\[ \Rightarrow \]$2b + 9 = 13$
\[ \Rightarrow \]\[2b = 13 - 9\]
\[ \Rightarrow \]\[2b = 4\]
\[ \Rightarrow \]\[b = \dfrac{4}{2}\]
\[ \Rightarrow \]\[b = 2\]
Substitute the value of $p$ and $q$ we get,
$\dfrac{1}{x} = p$ and $\dfrac{1}{y} = q$
$i.e.$$\dfrac{1}{x} = 2$ $i.e.$$\dfrac{1}{2} = x$
$i.e.$ $\dfrac{1}{y} = 3$ $i.e.$ $\dfrac{1}{3} = y$
Therefore the value of $x = \dfrac{1}{2}$ and value of $x = \dfrac{1}{3}$.
Note: Be careful while processing simultaneous linear equations from mathematical problems.
- Make sure to remember how to solve simultaneous equations by the method of comparison and method of cross-multiplication.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE