Answer
Verified
430.5k+ views
Hint: For getting the value of a variable in this kind of fraction form, you just need to simplify the fraction, if simplification is possible with the fraction term then first simplify it and then cross multiply and find the solution of the variable, if simplification is not possible then just simply put every term in one side of equation and the variable on the other side to get the solution.
Complete step by step solution:
The given question is to simplify the fraction equation
\[\dfrac{{hi}}{{ho}} = - \dfrac{{di}}{{do}}\]
And to find the value of “do”
Assuming that the given terms in the fraction part are solely independent, that is the given variables can’t be reduced by cancelling the similar letters in denominator and numerator we get:
\[
\Rightarrow \dfrac{{hi}}{{ho}} = - \dfrac{{di}}{{do}} \\
\Rightarrow do \times \dfrac{{hi}}{{ho}} = - di \\
\Rightarrow do = - di \times \dfrac{{ho}}{{hi}} \\
\]
This is our final solution for the variable asked in the question.
Additional Information:Here you can also assume the terms as some other variable to get no confusion with the cross multiplication and getting the solution of the equation, but since there are only two –two variables written in the terms of fraction so you can solve directly also.
Note:To get solution of such question you need to clear with the cross multiplication rule, that is when you multiply the denominator of the left hand side equation term to the right hand side then it will multiply in the numerator part of the right hand side equation term and vice versa for the case of denominator.
Complete step by step solution:
The given question is to simplify the fraction equation
\[\dfrac{{hi}}{{ho}} = - \dfrac{{di}}{{do}}\]
And to find the value of “do”
Assuming that the given terms in the fraction part are solely independent, that is the given variables can’t be reduced by cancelling the similar letters in denominator and numerator we get:
\[
\Rightarrow \dfrac{{hi}}{{ho}} = - \dfrac{{di}}{{do}} \\
\Rightarrow do \times \dfrac{{hi}}{{ho}} = - di \\
\Rightarrow do = - di \times \dfrac{{ho}}{{hi}} \\
\]
This is our final solution for the variable asked in the question.
Additional Information:Here you can also assume the terms as some other variable to get no confusion with the cross multiplication and getting the solution of the equation, but since there are only two –two variables written in the terms of fraction so you can solve directly also.
Note:To get solution of such question you need to clear with the cross multiplication rule, that is when you multiply the denominator of the left hand side equation term to the right hand side then it will multiply in the numerator part of the right hand side equation term and vice versa for the case of denominator.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE