
Solve for every value of n, ${1^2} + {2^2} + {3^2} + ............ + {n^2} = \dfrac{1}{6}\left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right)$, n is a natural number
Answer
522.6k+ views
Hint-Use mathematical induction. It is a mathematical technique which is used to prove a statement, a formula or a theorem is true for every natural number.
We prove the above relation by principle of mathematical induction. This technique involves two steps to prove a statement.
Step 1-It proves that a statement is true for the initial value.
Step 2-It proves that if the statement is true for the nth number then it is also true for (n+1)th number.
Let $p\left( n \right) = {1^2} + {2^2} + {3^2} + ............ + {n^2} = \dfrac{1}{6}\left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right)$
For n=1
$LHS = {1^2} = 1$
$
RHS = \dfrac{{\left( 1 \right)\left( {1 + 1} \right)\left( {2 \times 1 + 1} \right)}}{6} \\
\Rightarrow RHS = \dfrac{{1 \times 2 \times 3}}{6} = 1 \\
$
$LHS = RHS$
P(n) is true for n=1
So, It proves that a statement is true for the initial value.
Now, we Assume that P(k) is true
\[{1^2} + {2^2} + {3^2} + ............ + {\left( {k - 1} \right)^2} + {k^2} = \dfrac{{\left( k \right)\left( {k + 1} \right)\left( {2k + 1} \right)}}{6}\]
Now, we have to prove that P(k+1) is true
$
{1^2} + {2^2} + {3^2} + ............ + {k^2} + {\left( {k + 1} \right)^2} = \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)}}{6} \\
LHS = {1^2} + {2^2} + {3^2} + ............ + {k^2} + {\left( {k + 1} \right)^2} \\
\Rightarrow LHS = \dfrac{{\left( k \right)\left( {k + 1} \right)\left( {2k + 1} \right)}}{6} + {\left( {k + 1} \right)^2} \\
\Rightarrow LHS = \dfrac{{\left( k \right)\left( {k + 1} \right)\left( {2k + 1} \right) + 6{{\left( {k + 1} \right)}^2}}}{6} \\
$
Take common (k+1)
$
\Rightarrow LHS = \dfrac{{\left( {k + 1} \right)\left( {k\left( {2k + 1} \right) + 6\left( {k + 1} \right)} \right)}}{6} \\
\Rightarrow LHS = \dfrac{{\left( {k + 1} \right)\left( {2{k^2} + 7k + 6} \right)}}{6} \\
$
Now factories
$
\Rightarrow LHS = \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)}}{6} \\
LHS = RHS \\
$
It is proved that P(k+1) is true. So, we can say P(k) is also true.
So, Hence proved ${1^2} + {2^2} + {3^2} + ............ + {n^2} = \dfrac{1}{6}\left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right)$ for every value of n, n is a natural number.
Note-Whenever we face such types of problems we use some important points. First check the statement for initial value (n=1) .If it is proved then we assume the statement is true for (n=k) .So, statement is also true for (n=k+1).
We prove the above relation by principle of mathematical induction. This technique involves two steps to prove a statement.
Step 1-It proves that a statement is true for the initial value.
Step 2-It proves that if the statement is true for the nth number then it is also true for (n+1)th number.
Let $p\left( n \right) = {1^2} + {2^2} + {3^2} + ............ + {n^2} = \dfrac{1}{6}\left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right)$
For n=1
$LHS = {1^2} = 1$
$
RHS = \dfrac{{\left( 1 \right)\left( {1 + 1} \right)\left( {2 \times 1 + 1} \right)}}{6} \\
\Rightarrow RHS = \dfrac{{1 \times 2 \times 3}}{6} = 1 \\
$
$LHS = RHS$
P(n) is true for n=1
So, It proves that a statement is true for the initial value.
Now, we Assume that P(k) is true
\[{1^2} + {2^2} + {3^2} + ............ + {\left( {k - 1} \right)^2} + {k^2} = \dfrac{{\left( k \right)\left( {k + 1} \right)\left( {2k + 1} \right)}}{6}\]
Now, we have to prove that P(k+1) is true
$
{1^2} + {2^2} + {3^2} + ............ + {k^2} + {\left( {k + 1} \right)^2} = \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)}}{6} \\
LHS = {1^2} + {2^2} + {3^2} + ............ + {k^2} + {\left( {k + 1} \right)^2} \\
\Rightarrow LHS = \dfrac{{\left( k \right)\left( {k + 1} \right)\left( {2k + 1} \right)}}{6} + {\left( {k + 1} \right)^2} \\
\Rightarrow LHS = \dfrac{{\left( k \right)\left( {k + 1} \right)\left( {2k + 1} \right) + 6{{\left( {k + 1} \right)}^2}}}{6} \\
$
Take common (k+1)
$
\Rightarrow LHS = \dfrac{{\left( {k + 1} \right)\left( {k\left( {2k + 1} \right) + 6\left( {k + 1} \right)} \right)}}{6} \\
\Rightarrow LHS = \dfrac{{\left( {k + 1} \right)\left( {2{k^2} + 7k + 6} \right)}}{6} \\
$
Now factories
$
\Rightarrow LHS = \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)}}{6} \\
LHS = RHS \\
$
It is proved that P(k+1) is true. So, we can say P(k) is also true.
So, Hence proved ${1^2} + {2^2} + {3^2} + ............ + {n^2} = \dfrac{1}{6}\left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right)$ for every value of n, n is a natural number.
Note-Whenever we face such types of problems we use some important points. First check the statement for initial value (n=1) .If it is proved then we assume the statement is true for (n=k) .So, statement is also true for (n=k+1).
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
