
How do you solve for $K$ in $F = \dfrac{9}{5}\left( {K - 273} \right) + 32$?
Answer
453k+ views
Hint:This question is related to linear equation concept. An equation for a straight line is known as linear equations. The term which is involved in a linear equation is either a constant or a single variable or product of a constant. The two variables can never be multiplied. All linear equations have a line graph. Linear equations are the same as linear function. The general form of writing a linear equation is $y = mx + c$ and $m$ is not equal to zero, where $m$ is the slope and $c$ is the point on which it cuts the y-axis. $y = mx + c$ is also known as the equation of the line in slope-intercept form. This given question deals with a specific type of linear equation and that is, formulas for problem solving.
Complete step by step solution:
Given is $F = \dfrac{9}{5}\left( {K - 273} \right) + 32$
We have to solve the given equation in order to find the value of $K$ for which left-hand side is equal to the right-hand side of the equation.
Let us simply start by simplifying the given equation by subtracting $32$ from both sides of the equation.
$
\Rightarrow F - 32 = \dfrac{9}{5}\left( {K - 273} \right) + 32 - 32 \\
\Rightarrow F - 32 = \dfrac{9}{5}\left( {K - 273} \right) \\
$
Next, let us multiply $\dfrac{5}{9}$ on both the sides of the equation and we get,
$
\Rightarrow \dfrac{5}{9} \times \left( {F - 32} \right) = \left( {\dfrac{5}{9} \times \dfrac{9}{5}}
\right)\left( {K - 273} \right) \\
\Rightarrow \dfrac{5}{9} \times \left( {F - 32} \right) = 1 \times \left( {K - 273} \right) \\
\Rightarrow \dfrac{5}{9} \times \left( {F - 32} \right) = \left( {K - 273} \right) \\
$
Now, we add $273$ to both the sides of the equation and we get,
$
\Rightarrow \dfrac{5}{9} \times \left( {F - 32} \right) + 273 = \left( {K - 273} \right) + 273 \\
\Rightarrow \dfrac{5}{9} \times \left( {F - 32} \right) + 273 = K \\
$
Therefore, the value of $K$ is $\dfrac{5}{9} \times \left( {F - 32} \right) + 273$.
Note: Now that we know the value of $K$ is $\dfrac{5}{9} \times \left( {F - 32} \right) + 273$, there is a way to double check our answer. In order to double check the solution we are supposed to substitute the value of $K$ which we got as $\dfrac{5}{9} \times \left( {F - 32} \right) + 273$ in the given equation, $F = \dfrac{9}{5}\left( {K - 273} \right) + 32$
$
\Rightarrow F = \dfrac{9}{5}\left( {K - 273} \right) + 32 \\
\Rightarrow F = \dfrac{9}{5}\left( {\dfrac{5}{9}\left( {F - 32} \right) + 273 - 273} \right) + 32
\\
\Rightarrow F = \dfrac{9}{5}\left( {\dfrac{5}{9}\left( {F - 32} \right)} \right) + 32 \\
\Rightarrow F = F - 32 + 32 \\
\Rightarrow F = F \\
$$$$$
Now, the left-hand side is equal to the right-hand side of the equation. So, we can conclude that our solution or the value of $K$ which we calculated was correct.
Complete step by step solution:
Given is $F = \dfrac{9}{5}\left( {K - 273} \right) + 32$
We have to solve the given equation in order to find the value of $K$ for which left-hand side is equal to the right-hand side of the equation.
Let us simply start by simplifying the given equation by subtracting $32$ from both sides of the equation.
$
\Rightarrow F - 32 = \dfrac{9}{5}\left( {K - 273} \right) + 32 - 32 \\
\Rightarrow F - 32 = \dfrac{9}{5}\left( {K - 273} \right) \\
$
Next, let us multiply $\dfrac{5}{9}$ on both the sides of the equation and we get,
$
\Rightarrow \dfrac{5}{9} \times \left( {F - 32} \right) = \left( {\dfrac{5}{9} \times \dfrac{9}{5}}
\right)\left( {K - 273} \right) \\
\Rightarrow \dfrac{5}{9} \times \left( {F - 32} \right) = 1 \times \left( {K - 273} \right) \\
\Rightarrow \dfrac{5}{9} \times \left( {F - 32} \right) = \left( {K - 273} \right) \\
$
Now, we add $273$ to both the sides of the equation and we get,
$
\Rightarrow \dfrac{5}{9} \times \left( {F - 32} \right) + 273 = \left( {K - 273} \right) + 273 \\
\Rightarrow \dfrac{5}{9} \times \left( {F - 32} \right) + 273 = K \\
$
Therefore, the value of $K$ is $\dfrac{5}{9} \times \left( {F - 32} \right) + 273$.
Note: Now that we know the value of $K$ is $\dfrac{5}{9} \times \left( {F - 32} \right) + 273$, there is a way to double check our answer. In order to double check the solution we are supposed to substitute the value of $K$ which we got as $\dfrac{5}{9} \times \left( {F - 32} \right) + 273$ in the given equation, $F = \dfrac{9}{5}\left( {K - 273} \right) + 32$
$
\Rightarrow F = \dfrac{9}{5}\left( {K - 273} \right) + 32 \\
\Rightarrow F = \dfrac{9}{5}\left( {\dfrac{5}{9}\left( {F - 32} \right) + 273 - 273} \right) + 32
\\
\Rightarrow F = \dfrac{9}{5}\left( {\dfrac{5}{9}\left( {F - 32} \right)} \right) + 32 \\
\Rightarrow F = F - 32 + 32 \\
\Rightarrow F = F \\
$$$$$
Now, the left-hand side is equal to the right-hand side of the equation. So, we can conclude that our solution or the value of $K$ which we calculated was correct.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Truly whole mankind is one was declared by the Kannada class 10 social science CBSE

Explain the three major features of the shiwaliks class 10 social science CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE
