Answer
Verified
459k+ views
Hint: Simplifying such equations will give us higher degree equations.
If the equation is a quadratic equation we can either use a splitting middle term method or can use a discriminant method to solve the equation.
Discriminant method: For a quadratic equation ${ax^2}$+bx+c=0, the value of x will be: \[ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{2}\]
Complete step-by-step answer:
Given equation
\[\dfrac{1}{{x + 1}} + \dfrac{2}{{x + 2}} = \dfrac{4}{{x + 4}}\]
Taking L.CM and simplifying the equation we get;
\[ \Rightarrow \dfrac{{x + 2 + 2\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x + 2} \right)}} = \dfrac{4}{{x + 4}}\]
\[ \Rightarrow \dfrac{{x + 2 + 2x + 2}}{{{x^2} + 2x + x + 2}} = \dfrac{4}{{x + 4}}\]
\[ \Rightarrow \dfrac{{3x + 4}}{{{x^2} + 3x + 2}} = \dfrac{4}{{x + 4}}\]
Cross- multiplying both sides we get;
\[ \Rightarrow \left( {3x + 4} \right)\left( {x + 4} \right) = 4{x^2} + 12x + 8\]
\[ \Rightarrow 3{x^2} + 12x + 4x + 16 = 4{x^2} + 12x + 8\]
\[ \Rightarrow 3{x^2} + 16x + 16 = 4{x^2} + 12x + 8\]
\[ \Rightarrow {x^2} - 4x - 8 + 0\]
Above equation is a quadratic equation.
Using discriminant method;
\[ \Rightarrow x = \dfrac{{4 \pm \sqrt {16 + 32} }}{2}\]
\[ \Rightarrow x = \dfrac{{4 \pm 4\sqrt 3 }}{2}\]
\[ \Rightarrow x = 2 \pm 2\sqrt 3 \]
Required value for (x) =\[2 \pm 2\sqrt 3 \]
Note: A quadratic equation has degree 2 so the number of roots are also 2.
Depending on the value of (d), the number of roots can be real and distinct, real and equal or complex.
When D > 0, the roots are real and distinct.
When D =0, the roots are real and equal.
When D < 0, the roots are complex.
If the equation is a quadratic equation we can either use a splitting middle term method or can use a discriminant method to solve the equation.
Discriminant method: For a quadratic equation ${ax^2}$+bx+c=0, the value of x will be: \[ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{2}\]
Complete step-by-step answer:
Given equation
\[\dfrac{1}{{x + 1}} + \dfrac{2}{{x + 2}} = \dfrac{4}{{x + 4}}\]
Taking L.CM and simplifying the equation we get;
\[ \Rightarrow \dfrac{{x + 2 + 2\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x + 2} \right)}} = \dfrac{4}{{x + 4}}\]
\[ \Rightarrow \dfrac{{x + 2 + 2x + 2}}{{{x^2} + 2x + x + 2}} = \dfrac{4}{{x + 4}}\]
\[ \Rightarrow \dfrac{{3x + 4}}{{{x^2} + 3x + 2}} = \dfrac{4}{{x + 4}}\]
Cross- multiplying both sides we get;
\[ \Rightarrow \left( {3x + 4} \right)\left( {x + 4} \right) = 4{x^2} + 12x + 8\]
\[ \Rightarrow 3{x^2} + 12x + 4x + 16 = 4{x^2} + 12x + 8\]
\[ \Rightarrow 3{x^2} + 16x + 16 = 4{x^2} + 12x + 8\]
\[ \Rightarrow {x^2} - 4x - 8 + 0\]
Above equation is a quadratic equation.
Using discriminant method;
\[ \Rightarrow x = \dfrac{{4 \pm \sqrt {16 + 32} }}{2}\]
\[ \Rightarrow x = \dfrac{{4 \pm 4\sqrt 3 }}{2}\]
\[ \Rightarrow x = 2 \pm 2\sqrt 3 \]
Required value for (x) =\[2 \pm 2\sqrt 3 \]
Note: A quadratic equation has degree 2 so the number of roots are also 2.
Depending on the value of (d), the number of roots can be real and distinct, real and equal or complex.
When D > 0, the roots are real and distinct.
When D =0, the roots are real and equal.
When D < 0, the roots are complex.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE