
Solve for $x$: $\sqrt 3 {x^2} - 2\sqrt 2 x - 2\sqrt 3 = 0$
Answer
624.6k+ views
Hint- Here, we will be using a discriminant method to solve the given quadratic equation.
Given, equation is $\sqrt 3 {x^2} - 2\sqrt 2 x - 2\sqrt 3 = 0$
As we know that for any general quadratic equation $a{x^2} + bx + c = 0$, the solution is given as
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ where $d = \sqrt {{b^2} - 4ac} $ is the discriminant of the quadratic equation.
On comparing the given quadratic equation with the general quadratic equation, we get
$a = \sqrt 3 $ ,$b = - 2\sqrt 2 $ and $c = - 2\sqrt 3 $
Now substitute these values in the formula, we get
$
x = \dfrac{{ - \left( { - 2\sqrt 2 } \right) \pm \sqrt {{{\left( { - 2\sqrt 2 } \right)}^2} - 4\left( {\sqrt 3 } \right)\left( { - 2\sqrt 3 } \right)} }}{{2\left( {\sqrt 3 } \right)}} = \dfrac{{2\sqrt 2 \pm \sqrt {8 + 24} }}{{2\sqrt 3 }} = \dfrac{{2\sqrt 2 \pm \sqrt {32} }}{{2\sqrt 3 }} \\
\Rightarrow x = = \dfrac{{2\sqrt 2 \pm 4\sqrt 2 }}{{2\sqrt 3 }} = \dfrac{{\sqrt 2 \pm 2\sqrt 2 }}{{\sqrt 3 }} \\
$
$ \Rightarrow {x_1} = \dfrac{{\sqrt 2 + 2\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{3\sqrt 2 }}{{\sqrt 3 }} = \left( {\sqrt 3 } \right)\left( {\sqrt 2 } \right) = \sqrt 6 $ and $ \Rightarrow {x_2} = \dfrac{{\sqrt 2 - 2\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{ - \sqrt 2 }}{{\sqrt 3 }} = - \sqrt {\dfrac{2}{3}} $ .
i.e., The two roots of the given quadratic equation are ${x_1} = \sqrt 6 $ and ${x_2} = - \sqrt {\dfrac{2}{3}} $.
Therefore, the two values of $x$ possible in order to satisfy the given quadratic equations are $\sqrt 6 $ and $ - \sqrt {\dfrac{2}{3}} $.
Note- For any quadratic equation, $a{x^2} + bx + c = 0$, according to the value of $d = \sqrt {{b^2} - 4ac} $ we have three possible cases:
i. If it is positive, then the quadratic equation will have two different real roots.
ii. If it is equal to zero, then the quadratic equation will have real and equal roots.
iii. If it is negative, then the quadratic equation will have two different imaginary roots.
Given, equation is $\sqrt 3 {x^2} - 2\sqrt 2 x - 2\sqrt 3 = 0$
As we know that for any general quadratic equation $a{x^2} + bx + c = 0$, the solution is given as
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ where $d = \sqrt {{b^2} - 4ac} $ is the discriminant of the quadratic equation.
On comparing the given quadratic equation with the general quadratic equation, we get
$a = \sqrt 3 $ ,$b = - 2\sqrt 2 $ and $c = - 2\sqrt 3 $
Now substitute these values in the formula, we get
$
x = \dfrac{{ - \left( { - 2\sqrt 2 } \right) \pm \sqrt {{{\left( { - 2\sqrt 2 } \right)}^2} - 4\left( {\sqrt 3 } \right)\left( { - 2\sqrt 3 } \right)} }}{{2\left( {\sqrt 3 } \right)}} = \dfrac{{2\sqrt 2 \pm \sqrt {8 + 24} }}{{2\sqrt 3 }} = \dfrac{{2\sqrt 2 \pm \sqrt {32} }}{{2\sqrt 3 }} \\
\Rightarrow x = = \dfrac{{2\sqrt 2 \pm 4\sqrt 2 }}{{2\sqrt 3 }} = \dfrac{{\sqrt 2 \pm 2\sqrt 2 }}{{\sqrt 3 }} \\
$
$ \Rightarrow {x_1} = \dfrac{{\sqrt 2 + 2\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{3\sqrt 2 }}{{\sqrt 3 }} = \left( {\sqrt 3 } \right)\left( {\sqrt 2 } \right) = \sqrt 6 $ and $ \Rightarrow {x_2} = \dfrac{{\sqrt 2 - 2\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{ - \sqrt 2 }}{{\sqrt 3 }} = - \sqrt {\dfrac{2}{3}} $ .
i.e., The two roots of the given quadratic equation are ${x_1} = \sqrt 6 $ and ${x_2} = - \sqrt {\dfrac{2}{3}} $.
Therefore, the two values of $x$ possible in order to satisfy the given quadratic equations are $\sqrt 6 $ and $ - \sqrt {\dfrac{2}{3}} $.
Note- For any quadratic equation, $a{x^2} + bx + c = 0$, according to the value of $d = \sqrt {{b^2} - 4ac} $ we have three possible cases:
i. If it is positive, then the quadratic equation will have two different real roots.
ii. If it is equal to zero, then the quadratic equation will have real and equal roots.
iii. If it is negative, then the quadratic equation will have two different imaginary roots.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which Country is Called "The Land of Festivals"?

What is Contraception List its four different methods class 10 biology CBSE

