Answer
Verified
434.1k+ views
Hint:This question involves the operation of addition/ subtraction/ multiplication/ division. Also, we need to know how to convert square root functions into power functions. We need to know how to find extraneous roots from the given equation. We need to know the basic form of a quadratic equation and the formula to find \[x\] from the quadratic equation.
Complete step by step solution:
The given equation is shown below,
\[{\left( {x + 5} \right)^{\dfrac{1}{2}}} - {\left( {5 - 2x} \right)^{\dfrac{1}{4}}} = 0 \to \left( A
\right)\]
The above equation can also be written as,
\[{\left( {x + 5} \right)^{\dfrac{1}{2}}} = {\left( {5 - 2x} \right)^{\dfrac{1}{4}}}\]
For solving the above equation we take squares on both sides of the equation.
So we get
\[{\left( {{{\left( {x + 5} \right)}^{\dfrac{1}{2}}}} \right)^2} = {\left( {{{\left( {5 - 2x}
\right)}^{\dfrac{1}{4}}}} \right)^2} \to \left( 1 \right)\]
We know that,
\[{\left( {{a^m}} \right)^n} = {a^{m \times n}}\]
So, the equation\[\left( 1 \right)\]becomes,
\[{\left( {x + 5} \right)^{\dfrac{1}{2} \times 2}} = {\left( {5 - 2x} \right)^{\dfrac{1}{4} \times 2}}\]
So, we get
\[{\left( {x + 5} \right)^1} = {\left( {5 - 2x} \right)^{\dfrac{1}{2}}} \to \left( 2 \right)\]
Again take square on both sides of the equation\[\left( 2 \right)\], we get
\[
\left( 2 \right) \to {\left( {x + 5} \right)^1} = {\left( {5 - 2x} \right)^{\dfrac{1}{2}}} \\
{\left( {x + 5} \right)^2} = {\left( {5 - 2x} \right)^{\dfrac{1}{2} \times 2}} \\
\]
\[{\left( {x + 5} \right)^2} = \left( {5 - 2x} \right) \to \left( 3 \right)\]
We know that,
\[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
So, the equation\[\left( 3 \right)\]becomes
\[
\left( 3 \right) \to {\left( {x + 5} \right)^2} = \left( {5 - 2x} \right) \\
\left( {{x^2} + 10x + 25} \right) = \left( {5 - 2x} \right) \\
\]
The above equation can also be written as,
\[{x^2} + 25 + 10x - 5 + 2x = 0\]
By solving the above equation we get,
\[{x^2} + 12x + 20 = 0 \to \left( 4 \right)\]
The basic form of a quadratic equation is, \[a{x^2} + bx + c = 0\]
Then,
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \to \left( 5 \right)\]
By using the equation\[\left( 5 \right)\], we get the \[x\] value as follows,
\[\left( 4 \right) \to {x^2} + 12x + 20 = 0\]
Here, we have\[a = 1, b = 12\], and \[c = 20\]
So, the equation\[\left( 5 \right)\]becomes,
\[\left( 5 \right) \to x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
\[x = \dfrac{{\left( { - 12} \right) \pm \sqrt {{{\left( {12} \right)}^2} - 4 \times 1 \times 20} }}{{2
\times 1}}\]
\[
x = \dfrac{{ - 2 \pm \sqrt {144 - 80} }}{2} \\
x = \dfrac{{ - 2 \pm \sqrt {64} }}{2} \\
\]
We know that\[{8^2} = 64\]. So, the above equation\[\sqrt {64} \]can write as\[8\]. So, we get
\[
x = \dfrac{{ - 12 \pm 8}}{2} \\
x = \dfrac{{4\left( { - 3 \pm 2} \right)}}{2} \\
x = 2\left( { - 3 \pm 2} \right) \\
x = - 6 \pm 4 \\
\]
The above equation can be solved by two cases.
Case: \[1\]
We get,
\[
x = - 6 + 4 \\
x = - 2 \\
\]
Case: \[2\]
We get,
\[
x = - 6 - 4 \\
x = - 10 \\
\]
We have \[x = - 2\]and\[x = - 10\]. Let’s find the extraneous root from the values of \[x\]. Let’s
substitute \[x = - 2\]in the LHS of the equation\[\left( A \right)\], we get
LHS\[ \Rightarrow {\left( {x + 5} \right)^{\dfrac{1}{2}}}\]
\[ \Rightarrow {\left( { - 2 + 5} \right)^{\dfrac{1}{2}}} = {\left( 3 \right)^{\dfrac{1}{2}}} = \sqrt 3 \]
Let’s substitute\[x = - 2\] in the RHS of the equation \[\left( A \right)\], we get
RHS\[ \Rightarrow {\left( {5 - 2x} \right)^{\dfrac{1}{4}}}\]
\[ \Rightarrow {\left( {5 - (2 \times - 2)} \right)^{\dfrac{1}{4}}} = {\left( {5 + 4}
\right)^{\dfrac{1}{4}}} = {9^{\dfrac{1}{4}}} = {\left( 3 \right)^{2 \times \dfrac{1}{4}}} =
{3^{\dfrac{1}{2}}} = \sqrt 3 \]
Here, we get \[LHS = RHS\]
So, \[x = - 2\] is not an extraneous root of the given equation.
Let’s substitute\[x = - 10\]in the LHS of the equation\[\left( A \right)\], we get
LHS\[ \Rightarrow {\left( {x + 5} \right)^{\dfrac{1}{2}}}\]
\[ \Rightarrow {\left( { - 10 + 5} \right)^{\dfrac{1}{2}}} = {\left( { - 5} \right)^{\dfrac{1}{2}}} = \sqrt {5i} \]
Let’s substitute\[x = - 10\]in the RHS of the equation\[\left( A \right)\], we get
RHS\[ \Rightarrow {\left( {5 - 2x} \right)^{\dfrac{1}{4}}}\]
\[ \Rightarrow {\left( {5 - (2 \times - 10)} \right)^{\dfrac{1}{4}}} = {\left( {5 + 20}
\right)^{\dfrac{1}{4}}} = 9 = {25^{\dfrac{1}{4}}} = {\left( 5 \right)^{2 \times \dfrac{1}{4}}} =
{5^{\dfrac{1}{2}}} = \sqrt 5 \]
So, we get\[LHS \ne RHS\].
So, \[x = - 10\] is an extraneous root of the given equation.
So, the final answer is,
\[x = - 2\]and\[x = - 10\]
Here \[x = - 10\] is an extraneous root of the given question.
Note: Note that extraneous root means when we substitute the \[x\] values in the given equation if LHS is equal to RHS, then \[x\] the value is not an extraneous root. Otherwise, the\[x\]value is an extraneous root. Remember the formula for finding the \[x\] values from the quadratic equation to solve these types of problems. Also, this type of question involves the operation of addition/ subtraction/ multiplication/ division.
Complete step by step solution:
The given equation is shown below,
\[{\left( {x + 5} \right)^{\dfrac{1}{2}}} - {\left( {5 - 2x} \right)^{\dfrac{1}{4}}} = 0 \to \left( A
\right)\]
The above equation can also be written as,
\[{\left( {x + 5} \right)^{\dfrac{1}{2}}} = {\left( {5 - 2x} \right)^{\dfrac{1}{4}}}\]
For solving the above equation we take squares on both sides of the equation.
So we get
\[{\left( {{{\left( {x + 5} \right)}^{\dfrac{1}{2}}}} \right)^2} = {\left( {{{\left( {5 - 2x}
\right)}^{\dfrac{1}{4}}}} \right)^2} \to \left( 1 \right)\]
We know that,
\[{\left( {{a^m}} \right)^n} = {a^{m \times n}}\]
So, the equation\[\left( 1 \right)\]becomes,
\[{\left( {x + 5} \right)^{\dfrac{1}{2} \times 2}} = {\left( {5 - 2x} \right)^{\dfrac{1}{4} \times 2}}\]
So, we get
\[{\left( {x + 5} \right)^1} = {\left( {5 - 2x} \right)^{\dfrac{1}{2}}} \to \left( 2 \right)\]
Again take square on both sides of the equation\[\left( 2 \right)\], we get
\[
\left( 2 \right) \to {\left( {x + 5} \right)^1} = {\left( {5 - 2x} \right)^{\dfrac{1}{2}}} \\
{\left( {x + 5} \right)^2} = {\left( {5 - 2x} \right)^{\dfrac{1}{2} \times 2}} \\
\]
\[{\left( {x + 5} \right)^2} = \left( {5 - 2x} \right) \to \left( 3 \right)\]
We know that,
\[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
So, the equation\[\left( 3 \right)\]becomes
\[
\left( 3 \right) \to {\left( {x + 5} \right)^2} = \left( {5 - 2x} \right) \\
\left( {{x^2} + 10x + 25} \right) = \left( {5 - 2x} \right) \\
\]
The above equation can also be written as,
\[{x^2} + 25 + 10x - 5 + 2x = 0\]
By solving the above equation we get,
\[{x^2} + 12x + 20 = 0 \to \left( 4 \right)\]
The basic form of a quadratic equation is, \[a{x^2} + bx + c = 0\]
Then,
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \to \left( 5 \right)\]
By using the equation\[\left( 5 \right)\], we get the \[x\] value as follows,
\[\left( 4 \right) \to {x^2} + 12x + 20 = 0\]
Here, we have\[a = 1, b = 12\], and \[c = 20\]
So, the equation\[\left( 5 \right)\]becomes,
\[\left( 5 \right) \to x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
\[x = \dfrac{{\left( { - 12} \right) \pm \sqrt {{{\left( {12} \right)}^2} - 4 \times 1 \times 20} }}{{2
\times 1}}\]
\[
x = \dfrac{{ - 2 \pm \sqrt {144 - 80} }}{2} \\
x = \dfrac{{ - 2 \pm \sqrt {64} }}{2} \\
\]
We know that\[{8^2} = 64\]. So, the above equation\[\sqrt {64} \]can write as\[8\]. So, we get
\[
x = \dfrac{{ - 12 \pm 8}}{2} \\
x = \dfrac{{4\left( { - 3 \pm 2} \right)}}{2} \\
x = 2\left( { - 3 \pm 2} \right) \\
x = - 6 \pm 4 \\
\]
The above equation can be solved by two cases.
Case: \[1\]
We get,
\[
x = - 6 + 4 \\
x = - 2 \\
\]
Case: \[2\]
We get,
\[
x = - 6 - 4 \\
x = - 10 \\
\]
We have \[x = - 2\]and\[x = - 10\]. Let’s find the extraneous root from the values of \[x\]. Let’s
substitute \[x = - 2\]in the LHS of the equation\[\left( A \right)\], we get
LHS\[ \Rightarrow {\left( {x + 5} \right)^{\dfrac{1}{2}}}\]
\[ \Rightarrow {\left( { - 2 + 5} \right)^{\dfrac{1}{2}}} = {\left( 3 \right)^{\dfrac{1}{2}}} = \sqrt 3 \]
Let’s substitute\[x = - 2\] in the RHS of the equation \[\left( A \right)\], we get
RHS\[ \Rightarrow {\left( {5 - 2x} \right)^{\dfrac{1}{4}}}\]
\[ \Rightarrow {\left( {5 - (2 \times - 2)} \right)^{\dfrac{1}{4}}} = {\left( {5 + 4}
\right)^{\dfrac{1}{4}}} = {9^{\dfrac{1}{4}}} = {\left( 3 \right)^{2 \times \dfrac{1}{4}}} =
{3^{\dfrac{1}{2}}} = \sqrt 3 \]
Here, we get \[LHS = RHS\]
So, \[x = - 2\] is not an extraneous root of the given equation.
Let’s substitute\[x = - 10\]in the LHS of the equation\[\left( A \right)\], we get
LHS\[ \Rightarrow {\left( {x + 5} \right)^{\dfrac{1}{2}}}\]
\[ \Rightarrow {\left( { - 10 + 5} \right)^{\dfrac{1}{2}}} = {\left( { - 5} \right)^{\dfrac{1}{2}}} = \sqrt {5i} \]
Let’s substitute\[x = - 10\]in the RHS of the equation\[\left( A \right)\], we get
RHS\[ \Rightarrow {\left( {5 - 2x} \right)^{\dfrac{1}{4}}}\]
\[ \Rightarrow {\left( {5 - (2 \times - 10)} \right)^{\dfrac{1}{4}}} = {\left( {5 + 20}
\right)^{\dfrac{1}{4}}} = 9 = {25^{\dfrac{1}{4}}} = {\left( 5 \right)^{2 \times \dfrac{1}{4}}} =
{5^{\dfrac{1}{2}}} = \sqrt 5 \]
So, we get\[LHS \ne RHS\].
So, \[x = - 10\] is an extraneous root of the given equation.
So, the final answer is,
\[x = - 2\]and\[x = - 10\]
Here \[x = - 10\] is an extraneous root of the given question.
Note: Note that extraneous root means when we substitute the \[x\] values in the given equation if LHS is equal to RHS, then \[x\] the value is not an extraneous root. Otherwise, the\[x\]value is an extraneous root. Remember the formula for finding the \[x\] values from the quadratic equation to solve these types of problems. Also, this type of question involves the operation of addition/ subtraction/ multiplication/ division.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE