Answer
Verified
430.5k+ views
Hint: Here the given function is a logarithm function it can be defined as logarithmic functions are the inverses of exponential functions. The given log function has base value 6 by using some of the Basic Properties of logarithmic functions. And by further simplification we get a required solution.
Complete step by step solution:
The function from positive real numbers to real numbers to real numbers is defined as \[{\log _b}:{R^ + } \to R \Rightarrow {\log _b}\left( x \right) = y\] , if \[{b^y} = x\] , is called logarithmic function or the logarithm function is the inverse form of exponential function.
There are some basic logarithms properties
1. product rule :- \[\log \left( {mn} \right) = \log m + \log n\]
2. Quotient rule :- \[\log \left( {\dfrac{m}{n}} \right) = \log m - \log n\]
3. Power rule :- \[\log \left( {{m^n}} \right) = n.\log m\]
Now, Consider the given logarithm function, it has base 6
\[ \Rightarrow {\log _6}\left( x \right) - {\log _6}\left( {x - 6} \right) = 1\] (1)
By using the quotient rule of logarithm properties equation (1) can be rewritten as
\[ \Rightarrow {\log _6}\left( {\dfrac{x}{{x - 6}}} \right) = 1\] (2)
By the definition of logarithm function \[ \Rightarrow {\log _b}\left( x \right) = y\] can be written as \[{b^y} = x\] .
Then, equation (2) becomes
\[ \Rightarrow \dfrac{x}{{x - 6}} = {6^1}\]
On simplification we get
\[ \Rightarrow \dfrac{x}{{x - 6}} = 6\]
Multiply both side by \[\left( {x - 6} \right)\] , we get
\[ \Rightarrow x = 6\left( {x - 6} \right)\]
Using distributive property on RHS then
\[ \Rightarrow x = 6x - 36\]
Isolate the x variable on one side of the equation, by subtracting 6x on both side, then
\[ \Rightarrow x - 6x = 6x - 36 - 6x\]
On simplification we get
\[ \Rightarrow - 5x = - 36\]
Cancel ‘-’ ve on both sides, then
\[ \Rightarrow 5x = 36\]
To solve x, divide both sides by 5.
\[\therefore x = \dfrac{{36}}{5}\]
Hence, the value of x in the function \[{\log _6}\left( x \right) - {\log _6}\left( {x - 6} \right) = 1\] is \[\dfrac{{36}}{5}\] .
So, the correct answer is “ \[\dfrac{{36}}{5}\] ”.
Note: The question contains the log terms we must know the logarithmic properties which are the standard properties. By applying properties we can solve the question in an easy manner. We apply the formula \[{\log _b}\left( x \right) = y\] that can be written as \[{b^y} = x\] . where it is necessary. Hence, we obtain the desired result.
Complete step by step solution:
The function from positive real numbers to real numbers to real numbers is defined as \[{\log _b}:{R^ + } \to R \Rightarrow {\log _b}\left( x \right) = y\] , if \[{b^y} = x\] , is called logarithmic function or the logarithm function is the inverse form of exponential function.
There are some basic logarithms properties
1. product rule :- \[\log \left( {mn} \right) = \log m + \log n\]
2. Quotient rule :- \[\log \left( {\dfrac{m}{n}} \right) = \log m - \log n\]
3. Power rule :- \[\log \left( {{m^n}} \right) = n.\log m\]
Now, Consider the given logarithm function, it has base 6
\[ \Rightarrow {\log _6}\left( x \right) - {\log _6}\left( {x - 6} \right) = 1\] (1)
By using the quotient rule of logarithm properties equation (1) can be rewritten as
\[ \Rightarrow {\log _6}\left( {\dfrac{x}{{x - 6}}} \right) = 1\] (2)
By the definition of logarithm function \[ \Rightarrow {\log _b}\left( x \right) = y\] can be written as \[{b^y} = x\] .
Then, equation (2) becomes
\[ \Rightarrow \dfrac{x}{{x - 6}} = {6^1}\]
On simplification we get
\[ \Rightarrow \dfrac{x}{{x - 6}} = 6\]
Multiply both side by \[\left( {x - 6} \right)\] , we get
\[ \Rightarrow x = 6\left( {x - 6} \right)\]
Using distributive property on RHS then
\[ \Rightarrow x = 6x - 36\]
Isolate the x variable on one side of the equation, by subtracting 6x on both side, then
\[ \Rightarrow x - 6x = 6x - 36 - 6x\]
On simplification we get
\[ \Rightarrow - 5x = - 36\]
Cancel ‘-’ ve on both sides, then
\[ \Rightarrow 5x = 36\]
To solve x, divide both sides by 5.
\[\therefore x = \dfrac{{36}}{5}\]
Hence, the value of x in the function \[{\log _6}\left( x \right) - {\log _6}\left( {x - 6} \right) = 1\] is \[\dfrac{{36}}{5}\] .
So, the correct answer is “ \[\dfrac{{36}}{5}\] ”.
Note: The question contains the log terms we must know the logarithmic properties which are the standard properties. By applying properties we can solve the question in an easy manner. We apply the formula \[{\log _b}\left( x \right) = y\] that can be written as \[{b^y} = x\] . where it is necessary. Hence, we obtain the desired result.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE