Answer
Verified
397.8k+ views
Hint: Mixture problems are ones where two different solutions are mixed together resulting in a new final solution. We generally use a table to solve mixture equations and plot the different variables as per the criteria given to arrive at a rational conclusion.
Complete step-by-step answer:
A set of simultaneous equations, also known as a system of equations or an equation system, is a finite set of equations for which common solutions are sought.
Mixture equation is generally solved by using the following table format:
The first column is for the amount of each item we have. The second column is labelled “part” which can be generally in form or percentage or any other criteria. To arrive at the total, we simplify having to multiply the “Amount” and “Part”. We can get an equation by adding the amount and/or total columns that will help us solve the problems. These problems can have either one or two variables.
Let us understand with the help of an example:
A chemist has \[70\]mL of a \[50\% \] methane solution. How much of the \[80\% \] solution must she add so the final solution is \[60\% \] methane?
Step 1: Construct the mixture table with the given data. We start with \[70\], but don′ t know how much we add, that is \[x\]. The part is the percentages, \[0.5\] for start, \[0.8\] for add.
Step 2: Add the values to arrive at the final column. The percentage for this quantity is \[0.6\] because we want the final solution to be \[60\% \] methane.
Step 3: Multiply the quantity with % to arrive at the total column.
Step 4: Now we can construct an equation:
\[35 + 0.8x = 42 + 0.6x\]
Subtracting by \[0.6\]on both the sides,
\[35 + 0.2x = 42\]
Further simplifying
\[0.2x = 42 - 35\]
\[0.2x = 7\]
\[x = \dfrac{7}{{0.2}}\]
\[x = 35\]
Hence, we can conclude that a \[35\] ml solution will be required.
So, the correct answer is “\[35\] ml”.
Note: Mixture problems can be solved easily by drawing a table and then applying simple addition, subtraction, multiplication and division rules. There may be more than one unknown variable which can be found as per the above method. Mixture problems are used practically in a variety of fields for solving real life problems for example concentration of acid in a solution, finding value of product in staggered price structure, deciding discount policy for product based on given margin etc.
Complete step-by-step answer:
A set of simultaneous equations, also known as a system of equations or an equation system, is a finite set of equations for which common solutions are sought.
Mixture equation is generally solved by using the following table format:
Amount | Part | Total | |
Item 1 | |||
Item 2 | |||
Final |
The first column is for the amount of each item we have. The second column is labelled “part” which can be generally in form or percentage or any other criteria. To arrive at the total, we simplify having to multiply the “Amount” and “Part”. We can get an equation by adding the amount and/or total columns that will help us solve the problems. These problems can have either one or two variables.
Let us understand with the help of an example:
A chemist has \[70\]mL of a \[50\% \] methane solution. How much of the \[80\% \] solution must she add so the final solution is \[60\% \] methane?
Step 1: Construct the mixture table with the given data. We start with \[70\], but don′ t know how much we add, that is \[x\]. The part is the percentages, \[0.5\] for start, \[0.8\] for add.
Qty(ml) | % | Total | |
Start | \[70\] | \[0.5\] | |
Add | \[x\] | \[0.8\] | |
Final |
Step 2: Add the values to arrive at the final column. The percentage for this quantity is \[0.6\] because we want the final solution to be \[60\% \] methane.
Qty(ml) | % | Total | |
Start | \[70\] | \[0.5\] | |
Add | x | \[0.8\] | |
Final | \[70 + x\] | \[0.6\] |
Step 3: Multiply the quantity with % to arrive at the total column.
Qty(ml) | % | Total | |
Start | \[70\] | \[0.5\] | \[35\] |
Add | \[x\] | \[0.8\] | \[0.8x\] |
Final | \[70 + x\] | \[0.6\] | \[42 + 0.6x\] |
Step 4: Now we can construct an equation:
\[35 + 0.8x = 42 + 0.6x\]
Subtracting by \[0.6\]on both the sides,
\[35 + 0.2x = 42\]
Further simplifying
\[0.2x = 42 - 35\]
\[0.2x = 7\]
\[x = \dfrac{7}{{0.2}}\]
\[x = 35\]
Hence, we can conclude that a \[35\] ml solution will be required.
So, the correct answer is “\[35\] ml”.
Note: Mixture problems can be solved easily by drawing a table and then applying simple addition, subtraction, multiplication and division rules. There may be more than one unknown variable which can be found as per the above method. Mixture problems are used practically in a variety of fields for solving real life problems for example concentration of acid in a solution, finding value of product in staggered price structure, deciding discount policy for product based on given margin etc.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE