Answer
Verified
460.8k+ views
Hint: To solve the above differential equation we will first try to split x and y terms with dx and dy, that is:
${{\left( 1-{{x}^{2}} \right)}^{2}}dy+y\sqrt{1-{{x}^{2}}}dx-xdx-\sqrt{1-{{x}^{2}}}dx=0$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{x+\left( 1-y \right)\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}-\dfrac{y\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}$
$\Rightarrow \dfrac{dy}{dx}+\dfrac{y}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}.............\left( 1 \right)$
Now, we can see that the above equation is in the form linear differential equation of first order, that is$\dfrac{dy}{dx}+P\left( x \right)y=Q\left( x \right)...............\left( 2 \right)$
And, the solution of above differential equation is given by:
$y{{e}^{\int{P\left( x \right)dx}}}=\int{Q\left( x \right)}\times {{e}^{\int{P\left( x \right)dx}}}dx$
Now, after comparing the equation (1) and (2) we will get function P(x) and Q(x) and then we will solve the equation we get to get our required answer.
Complete step-by-step solution:
We will first split the above given differential equation, that is ${{\left( 1-{{x}^{2}} \right)}^{2}}dy+\left( y\sqrt{1-{{x}^{2}}}-x-\sqrt{1-{{x}^{2}}} \right)dx=0$, such that term of x comes with dx and terms of y come with dy.
So, ${{\left( 1-{{x}^{2}} \right)}^{2}}dy+\left( y\sqrt{1-{{x}^{2}}}-x-\sqrt{1-{{x}^{2}}} \right)dx=0$ can be rewritten as:
${{\left( 1-{{x}^{2}} \right)}^{2}}dy+y\sqrt{1-{{x}^{2}}}dx-xdx-\sqrt{1-{{x}^{2}}}dx=0$
$\Rightarrow {{\left( 1-{{x}^{2}} \right)}^{2}}dy=-y\sqrt{1-{{x}^{2}}}dx+xdx+\sqrt{1-{{x}^{2}}}dx$
$\Rightarrow {{\left( 1-{{x}^{2}} \right)}^{2}}dy=\left( x+\left( 1-y \right)\sqrt{1-{{x}^{2}}} \right)dx$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{x+\left( 1-y \right)\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}-\dfrac{y\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}$
$\Rightarrow \dfrac{dy}{dx}+\dfrac{y}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}.............\left( 1 \right)$
Now, we can see that the above equation (1) is in the form of linear differential equation of first order, that is:
$\dfrac{dy}{dx}+P\left( x \right)y=Q\left( x \right)...............\left( 2 \right)$
So, $P\left( x \right)=\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}},Q\left( x \right)=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}$
And, we know that solution of above equation (2) is given by:
$y{{e}^{\int{P\left( x \right)dx}}}=\int{Q\left( x \right)}\times {{e}^{\int{P\left( x \right)dx}}}dx$, here ${{e}^{\int{P\left( x \right)dx}}}$ is also known as integrating factor.
So, integrating factor is:
${{e}^{\int{P\left( x \right)dx}}}={{e}^{\int{\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}dx}}}............\left( 3 \right)$
Let$x=\cos \theta $, so $dx=-\sin \theta d\theta $
Putting the value of x and dx in equation (3) we will get:
${{e}^{\int{P\left( x \right)dx}}}={{e}^{\int{\dfrac{1}{{{\left( 1-{{\cos }^{2}}\theta \right)}^{\dfrac{3}{2}}}}(-\sin \theta )d\theta }}}$
$\Rightarrow {{e}^{\int{P\left( x \right)dx}}}={{e}^{\int{\dfrac{-\sin \theta }{{{\sin }^{3}}\theta }dx}}}$
$\Rightarrow {{e}^{\int{P\left( x \right)dx}}}={{e}^{\int{-{{\operatorname{cosec}}^{2}}\theta dx}}}$
And we know that $-{{\int{\operatorname{cosec}}}^{2}}\theta d\theta =\cot \theta +c$
So, ${{e}^{\int{P\left( x \right)dx}}}={{e}^{\cot \theta }}$
Now, we will put $x=\cos \theta $, in Q(x):
$Q\left( x \right)=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}$
$Q\left( \theta \right)=\dfrac{\cos \theta }{{{\left( 1-{{\cos }^{2}}\theta \right)}^{2}}}+\dfrac{1}{{{\left( 1-{{\cos }^{2}}\theta \right)}^{\dfrac{3}{2}}}}$
$\Rightarrow Q\left( \theta \right)=\dfrac{\cos \theta }{{{\sin }^{4}}\theta }+\dfrac{1}{{{\sin }^{3}}\theta }$
$\Rightarrow Q\left( \theta \right)=\dfrac{\cos \theta +\sin \theta }{{{\sin }^{4}}\theta }$
Now, we will put the value of ${{e}^{\int{P\left( x \right)dx}}}$, Q(x), and dx in equation $y{{e}^{\int{P\left( x \right)dx}}}=\int{Q\left( x \right)}\times {{e}^{\int{P\left( x \right)dx}}}dx$
$\Rightarrow y{{e}^{\cot \theta }}=\int{\left( \dfrac{\cos \theta +\sin \theta }{{{\sin }^{4}}\theta } \right)}\times {{e}^{\cot \theta }}\times \left( -\sin \theta \right)d\theta $
$\Rightarrow y{{e}^{\cot \theta }}=-\int{\left( \dfrac{\cos \theta +\sin \theta }{{{\sin }^{3}}\theta } \right)}\times {{e}^{\cot \theta }}d\theta $
$\Rightarrow y{{e}^{\cot \theta }}=-\int{\left( \dfrac{\cos \theta }{{{\sin }^{3}}\theta } \right)}\times {{e}^{\cot \theta }}d\theta -\int{\left( \dfrac{1}{{{\sin }^{2}}\theta } \right)}\times {{e}^{\cot \theta }}d\theta $
$\Rightarrow y{{e}^{\cot \theta }}=-\int{{{\operatorname{cosec}}^{2}}\theta \cot \theta }\times {{e}^{\cot \theta }}d\theta -\int{{{\operatorname{cosec}}^{2}}\theta }\times {{e}^{\cot \theta }}d\theta $
Let $\cot \theta =t$, then $dt=-{{\operatorname{cosec}}^{2}}\theta d\theta $
Now, we will put ‘t’ in place $\cot \theta $ and $dt$ in place of $-{{\operatorname{cosec}}^{2}}\theta d\theta $.
$\therefore y{{e}^{\cot \theta }}=\int{t}\times {{e}^{t}}dt+\int{{{e}^{t}}}dt$
We will use integration by parts as $\int u.v dx = u \int{v} dx - \int(u’)(v)dx$ to solve $\int{t}\times {{e}^{t}}dt$ where $u =t$ and $v= {{e}^{t}}$
$\Rightarrow y{{e}^{\cot \theta }}=t{{e}^{t}}-\int{{{e}^{t}}dt+\int{{{e}^{t}}dt}}$
$\Rightarrow y{{e}^{\cot \theta }}=t{{e}^{t}}+C$
Now, we know that $\cot \theta =t$, so:
$\Rightarrow y{{e}^{\cot \theta }}=\cot \theta \times {{e}^{\cot \theta }}+C$
So, $y=\cot \theta +C{{e}^{-\cot \theta }}$
Now, since we have assumed above that $x=\cos \theta $
So, $\sin \theta =\sqrt{1-{{x}^{2}}}$, so $\cot \theta =\dfrac{x}{\sqrt{1-{{x}^{2}}}}$
So, $y=\dfrac{x}{\sqrt{1-{{x}^{2}}}}+C{{e}^{-\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)}}$
This is our required solution.
Note: Since we have seen that there is a lot of calculation and integrating term in the above solution. So, students are required to be familiar with all integration types and formulas and avoid calculation mistakes and also assume such terms as t which will make our calculation easy.
${{\left( 1-{{x}^{2}} \right)}^{2}}dy+y\sqrt{1-{{x}^{2}}}dx-xdx-\sqrt{1-{{x}^{2}}}dx=0$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{x+\left( 1-y \right)\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}-\dfrac{y\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}$
$\Rightarrow \dfrac{dy}{dx}+\dfrac{y}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}.............\left( 1 \right)$
Now, we can see that the above equation is in the form linear differential equation of first order, that is$\dfrac{dy}{dx}+P\left( x \right)y=Q\left( x \right)...............\left( 2 \right)$
And, the solution of above differential equation is given by:
$y{{e}^{\int{P\left( x \right)dx}}}=\int{Q\left( x \right)}\times {{e}^{\int{P\left( x \right)dx}}}dx$
Now, after comparing the equation (1) and (2) we will get function P(x) and Q(x) and then we will solve the equation we get to get our required answer.
Complete step-by-step solution:
We will first split the above given differential equation, that is ${{\left( 1-{{x}^{2}} \right)}^{2}}dy+\left( y\sqrt{1-{{x}^{2}}}-x-\sqrt{1-{{x}^{2}}} \right)dx=0$, such that term of x comes with dx and terms of y come with dy.
So, ${{\left( 1-{{x}^{2}} \right)}^{2}}dy+\left( y\sqrt{1-{{x}^{2}}}-x-\sqrt{1-{{x}^{2}}} \right)dx=0$ can be rewritten as:
${{\left( 1-{{x}^{2}} \right)}^{2}}dy+y\sqrt{1-{{x}^{2}}}dx-xdx-\sqrt{1-{{x}^{2}}}dx=0$
$\Rightarrow {{\left( 1-{{x}^{2}} \right)}^{2}}dy=-y\sqrt{1-{{x}^{2}}}dx+xdx+\sqrt{1-{{x}^{2}}}dx$
$\Rightarrow {{\left( 1-{{x}^{2}} \right)}^{2}}dy=\left( x+\left( 1-y \right)\sqrt{1-{{x}^{2}}} \right)dx$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{x+\left( 1-y \right)\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}-\dfrac{y\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}$
$\Rightarrow \dfrac{dy}{dx}+\dfrac{y}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}.............\left( 1 \right)$
Now, we can see that the above equation (1) is in the form of linear differential equation of first order, that is:
$\dfrac{dy}{dx}+P\left( x \right)y=Q\left( x \right)...............\left( 2 \right)$
So, $P\left( x \right)=\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}},Q\left( x \right)=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}$
And, we know that solution of above equation (2) is given by:
$y{{e}^{\int{P\left( x \right)dx}}}=\int{Q\left( x \right)}\times {{e}^{\int{P\left( x \right)dx}}}dx$, here ${{e}^{\int{P\left( x \right)dx}}}$ is also known as integrating factor.
So, integrating factor is:
${{e}^{\int{P\left( x \right)dx}}}={{e}^{\int{\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}dx}}}............\left( 3 \right)$
Let$x=\cos \theta $, so $dx=-\sin \theta d\theta $
Putting the value of x and dx in equation (3) we will get:
${{e}^{\int{P\left( x \right)dx}}}={{e}^{\int{\dfrac{1}{{{\left( 1-{{\cos }^{2}}\theta \right)}^{\dfrac{3}{2}}}}(-\sin \theta )d\theta }}}$
$\Rightarrow {{e}^{\int{P\left( x \right)dx}}}={{e}^{\int{\dfrac{-\sin \theta }{{{\sin }^{3}}\theta }dx}}}$
$\Rightarrow {{e}^{\int{P\left( x \right)dx}}}={{e}^{\int{-{{\operatorname{cosec}}^{2}}\theta dx}}}$
And we know that $-{{\int{\operatorname{cosec}}}^{2}}\theta d\theta =\cot \theta +c$
So, ${{e}^{\int{P\left( x \right)dx}}}={{e}^{\cot \theta }}$
Now, we will put $x=\cos \theta $, in Q(x):
$Q\left( x \right)=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}$
$Q\left( \theta \right)=\dfrac{\cos \theta }{{{\left( 1-{{\cos }^{2}}\theta \right)}^{2}}}+\dfrac{1}{{{\left( 1-{{\cos }^{2}}\theta \right)}^{\dfrac{3}{2}}}}$
$\Rightarrow Q\left( \theta \right)=\dfrac{\cos \theta }{{{\sin }^{4}}\theta }+\dfrac{1}{{{\sin }^{3}}\theta }$
$\Rightarrow Q\left( \theta \right)=\dfrac{\cos \theta +\sin \theta }{{{\sin }^{4}}\theta }$
Now, we will put the value of ${{e}^{\int{P\left( x \right)dx}}}$, Q(x), and dx in equation $y{{e}^{\int{P\left( x \right)dx}}}=\int{Q\left( x \right)}\times {{e}^{\int{P\left( x \right)dx}}}dx$
$\Rightarrow y{{e}^{\cot \theta }}=\int{\left( \dfrac{\cos \theta +\sin \theta }{{{\sin }^{4}}\theta } \right)}\times {{e}^{\cot \theta }}\times \left( -\sin \theta \right)d\theta $
$\Rightarrow y{{e}^{\cot \theta }}=-\int{\left( \dfrac{\cos \theta +\sin \theta }{{{\sin }^{3}}\theta } \right)}\times {{e}^{\cot \theta }}d\theta $
$\Rightarrow y{{e}^{\cot \theta }}=-\int{\left( \dfrac{\cos \theta }{{{\sin }^{3}}\theta } \right)}\times {{e}^{\cot \theta }}d\theta -\int{\left( \dfrac{1}{{{\sin }^{2}}\theta } \right)}\times {{e}^{\cot \theta }}d\theta $
$\Rightarrow y{{e}^{\cot \theta }}=-\int{{{\operatorname{cosec}}^{2}}\theta \cot \theta }\times {{e}^{\cot \theta }}d\theta -\int{{{\operatorname{cosec}}^{2}}\theta }\times {{e}^{\cot \theta }}d\theta $
Let $\cot \theta =t$, then $dt=-{{\operatorname{cosec}}^{2}}\theta d\theta $
Now, we will put ‘t’ in place $\cot \theta $ and $dt$ in place of $-{{\operatorname{cosec}}^{2}}\theta d\theta $.
$\therefore y{{e}^{\cot \theta }}=\int{t}\times {{e}^{t}}dt+\int{{{e}^{t}}}dt$
We will use integration by parts as $\int u.v dx = u \int{v} dx - \int(u’)(v)dx$ to solve $\int{t}\times {{e}^{t}}dt$ where $u =t$ and $v= {{e}^{t}}$
$\Rightarrow y{{e}^{\cot \theta }}=t{{e}^{t}}-\int{{{e}^{t}}dt+\int{{{e}^{t}}dt}}$
$\Rightarrow y{{e}^{\cot \theta }}=t{{e}^{t}}+C$
Now, we know that $\cot \theta =t$, so:
$\Rightarrow y{{e}^{\cot \theta }}=\cot \theta \times {{e}^{\cot \theta }}+C$
So, $y=\cot \theta +C{{e}^{-\cot \theta }}$
Now, since we have assumed above that $x=\cos \theta $
So, $\sin \theta =\sqrt{1-{{x}^{2}}}$, so $\cot \theta =\dfrac{x}{\sqrt{1-{{x}^{2}}}}$
So, $y=\dfrac{x}{\sqrt{1-{{x}^{2}}}}+C{{e}^{-\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)}}$
This is our required solution.
Note: Since we have seen that there is a lot of calculation and integrating term in the above solution. So, students are required to be familiar with all integration types and formulas and avoid calculation mistakes and also assume such terms as t which will make our calculation easy.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE