Answer
Verified
499.5k+ views
Hint: In the given question the roots of the equation are in harmonic progression (H.P.). So, take the roots as \[\dfrac{1}{{a - 3d}},\dfrac{1}{{a - d}},\dfrac{1}{{a + d}}{\text{ and }}\dfrac{1}{{a + 3d}}\]. Use this concept to reach the solution of the problem.
Complete step-by-step answer:
Given equation is \[40{x^4} - 22{x^3} - 21{x^2} + 2x + 1 = 0\]
Let the roots of this equation are \[\dfrac{1}{{a - 3d}},\dfrac{1}{{a - d}},\dfrac{1}{{a + d}}{\text{ and }}\dfrac{1}{{a + 3d}}\].
Transforming the equation by replacing \[x\] with \[\dfrac{1}{x}\].
\[
\Rightarrow 40{\left( {\dfrac{1}{x}} \right)^4} - 22{\left( {\dfrac{1}{x}} \right)^3} - 21{\left( {\dfrac{1}{x}} \right)^2} + 2\left( {\dfrac{1}{x}} \right) + 1 = 0 \\
\Rightarrow \dfrac{{40}}{{{x^4}}} - \dfrac{{22}}{{{x^3}}} - \dfrac{{21}}{{{x^2}}} + \dfrac{2}{x} + 1 = 0 \\
\Rightarrow \dfrac{{40 - 22x - 21{x^2} + 2{x^3} + {x^4}}}{{{x^4}}} = 0 \\
\Rightarrow {x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0 \\
\]
Hence the transformed equation is \[{x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0\] and the roots are transformed into \[a - 3d,a - d,a + d{\text{ and a + 3d}}\].
We know that for the equation \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\], the sum of the roots \[{S_1} = - \dfrac{b}{a}\] and the sum of the roots taken two at a time is \[{S_2} = \dfrac{c}{a}\].
So, by using the above formula for the equation \[{x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0\] we have
Sum of the roots \[{S_1} = - \dfrac{b}{a} = - \dfrac{2}{1}\]
\[
\Rightarrow {S_1} = (a - 3d) + (a - d) + (a + d) + \left( {a + 3d} \right) = - \dfrac{2}{1} \\
\Rightarrow {S_1} = 4a = - 2 \\
\Rightarrow 4a = - 2 \\
\therefore a = - \dfrac{1}{2} \\
\]
Sum of the roots taken two at a time \[{S_2} = \dfrac{c}{a} = \dfrac{{ - 21}}{1} = - 21\]
\[
\Rightarrow {S_2} = (a - 3d)(a - d) + (a - 3d)\left( {a + d} \right) + \left( {a - 3d} \right)\left( {a + 3d} \right) + \left( {a - d} \right)\left( {a + d} \right) + \left( {a - d} \right)\left( {a + 3d} \right) + \left( {a + d} \right)\left( {a + 3d} \right) = - 21 \\
\Rightarrow {S_2} = {a^2} - 4d + 3{d^2} + {a^2} - 2d - 3{d^2} + {a^2} - 9{d^2} + {a^2} - {d^2} + {a^2} + 2d - 3{d^2} + {a^2} + 4d + 3{d^2} = - 21 \\
\Rightarrow {S_2} = 6{a^2} - 10{d^2} = - 21 \\
\]
Since, \[a = - \dfrac{1}{2}\]
\[
{S_2} = 6{\left( { - \dfrac{1}{2}} \right)^2} - 10{d^2} = - 21 \\
10{d^2} = 6\left( {\dfrac{1}{4}} \right) + 21 \\
10{d^2} = \dfrac{{6 + 84}}{4} \\
{d^2} = \dfrac{{90}}{4} \times \dfrac{1}{{10}} \\
{d^2} = \dfrac{{90}}{{40}} = \dfrac{9}{4} \\
\therefore d = \dfrac{3}{2} \\
\]
So, the roots are
\[
\Rightarrow \dfrac{1}{{a - 3d}} = \dfrac{1}{{ - \dfrac{1}{2} - 3\left( {\dfrac{3}{2}} \right)}} = \dfrac{1}{{ - \dfrac{{(1 + 9)}}{2}}} = \dfrac{1}{{ - \dfrac{{10}}{2}}} = - \dfrac{1}{5} \\
\Rightarrow \dfrac{1}{{a - d}} = \dfrac{1}{{ - \dfrac{1}{2} - \dfrac{3}{2}}} = \dfrac{1}{{ - \dfrac{4}{2}}} = - \dfrac{1}{2} \\
\Rightarrow \dfrac{1}{{a + d}} = \dfrac{1}{{ - \dfrac{1}{2} + \dfrac{3}{2}}} = \dfrac{2}{2} = 1 \\
\Rightarrow \dfrac{1}{{a + 3d}} = \dfrac{1}{{ - \dfrac{1}{2} + 3\left( {\dfrac{3}{2}} \right)}} = \dfrac{1}{{\dfrac{{( - 1 + 9)}}{2}}} = \dfrac{2}{8} = \dfrac{1}{4} \\
\]
Hence the roots of the equation \[40{x^4} - 22{x^3} - 21{x^2} + 2x + 1 = 0\] are \[ - \dfrac{1}{5}, - \dfrac{1}{2},1{\text{ and }}\dfrac{1}{4}\]
Note: The given equation is bi-quadratic equation. Hence the equation has 4 roots. Whenever the equation is transformed, the roots of that equation will also be transformed accordingly.
Complete step-by-step answer:
Given equation is \[40{x^4} - 22{x^3} - 21{x^2} + 2x + 1 = 0\]
Let the roots of this equation are \[\dfrac{1}{{a - 3d}},\dfrac{1}{{a - d}},\dfrac{1}{{a + d}}{\text{ and }}\dfrac{1}{{a + 3d}}\].
Transforming the equation by replacing \[x\] with \[\dfrac{1}{x}\].
\[
\Rightarrow 40{\left( {\dfrac{1}{x}} \right)^4} - 22{\left( {\dfrac{1}{x}} \right)^3} - 21{\left( {\dfrac{1}{x}} \right)^2} + 2\left( {\dfrac{1}{x}} \right) + 1 = 0 \\
\Rightarrow \dfrac{{40}}{{{x^4}}} - \dfrac{{22}}{{{x^3}}} - \dfrac{{21}}{{{x^2}}} + \dfrac{2}{x} + 1 = 0 \\
\Rightarrow \dfrac{{40 - 22x - 21{x^2} + 2{x^3} + {x^4}}}{{{x^4}}} = 0 \\
\Rightarrow {x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0 \\
\]
Hence the transformed equation is \[{x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0\] and the roots are transformed into \[a - 3d,a - d,a + d{\text{ and a + 3d}}\].
We know that for the equation \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\], the sum of the roots \[{S_1} = - \dfrac{b}{a}\] and the sum of the roots taken two at a time is \[{S_2} = \dfrac{c}{a}\].
So, by using the above formula for the equation \[{x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0\] we have
Sum of the roots \[{S_1} = - \dfrac{b}{a} = - \dfrac{2}{1}\]
\[
\Rightarrow {S_1} = (a - 3d) + (a - d) + (a + d) + \left( {a + 3d} \right) = - \dfrac{2}{1} \\
\Rightarrow {S_1} = 4a = - 2 \\
\Rightarrow 4a = - 2 \\
\therefore a = - \dfrac{1}{2} \\
\]
Sum of the roots taken two at a time \[{S_2} = \dfrac{c}{a} = \dfrac{{ - 21}}{1} = - 21\]
\[
\Rightarrow {S_2} = (a - 3d)(a - d) + (a - 3d)\left( {a + d} \right) + \left( {a - 3d} \right)\left( {a + 3d} \right) + \left( {a - d} \right)\left( {a + d} \right) + \left( {a - d} \right)\left( {a + 3d} \right) + \left( {a + d} \right)\left( {a + 3d} \right) = - 21 \\
\Rightarrow {S_2} = {a^2} - 4d + 3{d^2} + {a^2} - 2d - 3{d^2} + {a^2} - 9{d^2} + {a^2} - {d^2} + {a^2} + 2d - 3{d^2} + {a^2} + 4d + 3{d^2} = - 21 \\
\Rightarrow {S_2} = 6{a^2} - 10{d^2} = - 21 \\
\]
Since, \[a = - \dfrac{1}{2}\]
\[
{S_2} = 6{\left( { - \dfrac{1}{2}} \right)^2} - 10{d^2} = - 21 \\
10{d^2} = 6\left( {\dfrac{1}{4}} \right) + 21 \\
10{d^2} = \dfrac{{6 + 84}}{4} \\
{d^2} = \dfrac{{90}}{4} \times \dfrac{1}{{10}} \\
{d^2} = \dfrac{{90}}{{40}} = \dfrac{9}{4} \\
\therefore d = \dfrac{3}{2} \\
\]
So, the roots are
\[
\Rightarrow \dfrac{1}{{a - 3d}} = \dfrac{1}{{ - \dfrac{1}{2} - 3\left( {\dfrac{3}{2}} \right)}} = \dfrac{1}{{ - \dfrac{{(1 + 9)}}{2}}} = \dfrac{1}{{ - \dfrac{{10}}{2}}} = - \dfrac{1}{5} \\
\Rightarrow \dfrac{1}{{a - d}} = \dfrac{1}{{ - \dfrac{1}{2} - \dfrac{3}{2}}} = \dfrac{1}{{ - \dfrac{4}{2}}} = - \dfrac{1}{2} \\
\Rightarrow \dfrac{1}{{a + d}} = \dfrac{1}{{ - \dfrac{1}{2} + \dfrac{3}{2}}} = \dfrac{2}{2} = 1 \\
\Rightarrow \dfrac{1}{{a + 3d}} = \dfrac{1}{{ - \dfrac{1}{2} + 3\left( {\dfrac{3}{2}} \right)}} = \dfrac{1}{{\dfrac{{( - 1 + 9)}}{2}}} = \dfrac{2}{8} = \dfrac{1}{4} \\
\]
Hence the roots of the equation \[40{x^4} - 22{x^3} - 21{x^2} + 2x + 1 = 0\] are \[ - \dfrac{1}{5}, - \dfrac{1}{2},1{\text{ and }}\dfrac{1}{4}\]
Note: The given equation is bi-quadratic equation. Hence the equation has 4 roots. Whenever the equation is transformed, the roots of that equation will also be transformed accordingly.
Recently Updated Pages
A very dilute acidic solution of Cd2+ and Ni2+ gives class 12 chem sec 1 JEE_Main
Calculate the equivalent resistance between A and class 12 physics JEE_Main
The potential difference between points A and B in class 12 physics JEE_Main
A wire is bent in the form of a triangle now the equivalent class 12 physics NEET_UG
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
If on applying the potential of 20 V on a conductor class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE