Answer
Verified
496.8k+ views
Hint: The method of solving "by substitution" works by solving one of the equations (you choose which one) for one of the variables (you choose which one), and then plugging this back into the other equation, "substituting" for the chosen variable and solving for the other. Then you back-solve the first variable.
Complete step-by-step solution -
We have been given two equation \[2x+3y=9,3x+4y=5\] which we will have to solve by substitution method to solve the equation which is shown below;
\[\begin{align}
& 2x+3y=9.............................\text{(1)} \\
& 3x+4y=5..............................(2) \\
& \text{solving equation (1) we get,} \\
& \text{y=}\dfrac{\text{9-2x}}{3} \\
\end{align}\]
Now, we will substitute the above value of “y” using the equation (1) into equation (2) and then we will solve further for “x” as shown below,
\[\begin{align}
& \Rightarrow 3x+4\left( \dfrac{9-2x}{3} \right)=5 \\
& \Rightarrow \dfrac{9x+36-8x}{3}=5 \\
& \Rightarrow x+36=5\times 3 \\
& \Rightarrow x=15-36 \\
& \Rightarrow x=-21 \\
\end{align}\]
So, on solving the above equation we get x= -21.
Now, we will use the value of “x” in either of the two equation and solve for the value of “y” and we get ,
\[\begin{align}
& \Rightarrow 2x+3y=9 \\
& \Rightarrow 2\times (-21)+3y=9 \\
& \Rightarrow 3y=9+42 \\
& \Rightarrow y=\dfrac{51}{3}=17 \\
\end{align}\]
Hence, we get x= -21 and y=17 as a solution for the given system of equations by using a method of substitution.
NOTE: Remember the method of substitution , in general it is useful for the school examination purpose. Also be careful while doing calculation because there is a chance that you might make a mistake while substituting the value of one variable to the other equation and you will get the incorrect answer.
Complete step-by-step solution -
We have been given two equation \[2x+3y=9,3x+4y=5\] which we will have to solve by substitution method to solve the equation which is shown below;
\[\begin{align}
& 2x+3y=9.............................\text{(1)} \\
& 3x+4y=5..............................(2) \\
& \text{solving equation (1) we get,} \\
& \text{y=}\dfrac{\text{9-2x}}{3} \\
\end{align}\]
Now, we will substitute the above value of “y” using the equation (1) into equation (2) and then we will solve further for “x” as shown below,
\[\begin{align}
& \Rightarrow 3x+4\left( \dfrac{9-2x}{3} \right)=5 \\
& \Rightarrow \dfrac{9x+36-8x}{3}=5 \\
& \Rightarrow x+36=5\times 3 \\
& \Rightarrow x=15-36 \\
& \Rightarrow x=-21 \\
\end{align}\]
So, on solving the above equation we get x= -21.
Now, we will use the value of “x” in either of the two equation and solve for the value of “y” and we get ,
\[\begin{align}
& \Rightarrow 2x+3y=9 \\
& \Rightarrow 2\times (-21)+3y=9 \\
& \Rightarrow 3y=9+42 \\
& \Rightarrow y=\dfrac{51}{3}=17 \\
\end{align}\]
Hence, we get x= -21 and y=17 as a solution for the given system of equations by using a method of substitution.
NOTE: Remember the method of substitution , in general it is useful for the school examination purpose. Also be careful while doing calculation because there is a chance that you might make a mistake while substituting the value of one variable to the other equation and you will get the incorrect answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE