Answer
Verified
497.4k+ views
Hint – In order to solve this problem use the concept of trigonometric functions that sin(180-a)=sin(a). Using this formula and using the value of some angles of sine and cosine will take you to the value of k.
Complete step-by-step solution -
The given equation is:
\[{\text{sin3}}{{\text{6}}^{\text{0}}}\]\[{\text{sin7}}{{\text{2}}^0}\]\[{\text{sin10}}{{\text{8}}^0}\]\[{\text{sin14}}{{\text{4}}^0}\] =$\dfrac{{\text{k}}}{{{\text{16}}}}$ ……(1)
We have to find the value of k.
We will solve only LHS to get the value of k.
As we know, sin (180-a)=sin(a)
Therefore, sin108=sin(180-72)=sin72 and sin144=sin(180-36)=sin36
Putting these values in the equation (1) the equation becomes,
\[{\text{sin3}}{{\text{6}}^{\text{0}}}\]\[{\text{sin3}}{{\text{6}}^0}\]\[{\text{sin7}}{{\text{2}}^0}\]\[{\text{sin7}}{{\text{2}}^0}\] =$\dfrac{{\text{k}}}{{{\text{16}}}}$
On multiplying 4 with the numerator and denominator n the LGS of equation 4 we
$\dfrac{4}{4}$(\[{\text{sin3}}{{\text{6}}^{\text{0}}}\]\[\sin {72^0}\]\[{\text{sin7}}{{\text{2}}^0}\]\[\sin {36^0}\]) =$\dfrac{{\text{k}}}{{{\text{16}}}}$
$\dfrac{1}{4}$(2\[{\text{sin3}}{{\text{6}}^{\text{0}}}\]\[\sin {72^0}\])$^2$ =$\dfrac{{\text{k}}}{{{\text{16}}}}$
We can further do,
$\dfrac{1}{4}$(2\[{\text{sin3}}{{\text{6}}^{\text{0}}}\]\[\sin {72^0}\])(2$\sin {36^0}$\[{\text{sin7}}{{\text{2}}^0}\]) =$\dfrac{{\text{k}}}{{{\text{16}}}}$
As we know the formula: 2sinasinb=cos(a-b)-cos(a+b) applying the same to the above equation we get,
$\dfrac{1}{4}$($\cos (36 - 72) - \cos (36 + 72)$)($\cos (36 - 72) - \cos (36 + 72)$) =$\dfrac{{\text{k}}}{{{\text{16}}}}$
cos(-a) = cos(a) and cos(180-a) = -cos(a)
$\dfrac{1}{4}$${(\cos (36) - \cos (108))^2}$=$\dfrac{{\text{k}}}{{{\text{16}}}}$ ……(2)
cos(-a) = cos(a) and cos(90+a) = -sin(a)
$\dfrac{1}{4}$${(\cos (36) - \cos (90 + 18))^2}$=$\dfrac{{\text{k}}}{{{\text{16}}}}$
$\dfrac{1}{4}$${(\cos (36) + \sin (18))^2}$=$\dfrac{{\text{k}}}{{{\text{16}}}}$
As we know the value of cos36 =$\dfrac{{\sqrt 5 + 1}}{4}$, sin18 =$\dfrac{{\sqrt 5 - 1}}{4}$
On putting the values of cos90, cos18 and cos54 in equation number (2) we get,
$\dfrac{1}{4}$(\[\]${\left( {\dfrac{{\sqrt 5 + 1}}{4} + \dfrac{{\sqrt 5 - 1}}{4}} \right)^2}$=$\dfrac{{\text{k}}}{{{\text{16}}}}$
$\dfrac{1}{4}$(\[\]${\left( {\dfrac{{\sqrt 5 }}{2}} \right)^2}$=$\dfrac{{\text{k}}}{{{\text{16}}}}$
Further solving the equation we get the equation as:
$\dfrac{5}{{16}}$=$\dfrac{{\text{k}}}{{{\text{16}}}}$
So, k = 5.
Hence, the value of k is 5.
Note – Whenever you face such types of problems you have to use the general formulas and value of trigonometric functions. Doing this will solve your half of the question. After that solving the equation algebraically we will reach the correct solution of the question.
Complete step-by-step solution -
The given equation is:
\[{\text{sin3}}{{\text{6}}^{\text{0}}}\]\[{\text{sin7}}{{\text{2}}^0}\]\[{\text{sin10}}{{\text{8}}^0}\]\[{\text{sin14}}{{\text{4}}^0}\] =$\dfrac{{\text{k}}}{{{\text{16}}}}$ ……(1)
We have to find the value of k.
We will solve only LHS to get the value of k.
As we know, sin (180-a)=sin(a)
Therefore, sin108=sin(180-72)=sin72 and sin144=sin(180-36)=sin36
Putting these values in the equation (1) the equation becomes,
\[{\text{sin3}}{{\text{6}}^{\text{0}}}\]\[{\text{sin3}}{{\text{6}}^0}\]\[{\text{sin7}}{{\text{2}}^0}\]\[{\text{sin7}}{{\text{2}}^0}\] =$\dfrac{{\text{k}}}{{{\text{16}}}}$
On multiplying 4 with the numerator and denominator n the LGS of equation 4 we
$\dfrac{4}{4}$(\[{\text{sin3}}{{\text{6}}^{\text{0}}}\]\[\sin {72^0}\]\[{\text{sin7}}{{\text{2}}^0}\]\[\sin {36^0}\]) =$\dfrac{{\text{k}}}{{{\text{16}}}}$
$\dfrac{1}{4}$(2\[{\text{sin3}}{{\text{6}}^{\text{0}}}\]\[\sin {72^0}\])$^2$ =$\dfrac{{\text{k}}}{{{\text{16}}}}$
We can further do,
$\dfrac{1}{4}$(2\[{\text{sin3}}{{\text{6}}^{\text{0}}}\]\[\sin {72^0}\])(2$\sin {36^0}$\[{\text{sin7}}{{\text{2}}^0}\]) =$\dfrac{{\text{k}}}{{{\text{16}}}}$
As we know the formula: 2sinasinb=cos(a-b)-cos(a+b) applying the same to the above equation we get,
$\dfrac{1}{4}$($\cos (36 - 72) - \cos (36 + 72)$)($\cos (36 - 72) - \cos (36 + 72)$) =$\dfrac{{\text{k}}}{{{\text{16}}}}$
cos(-a) = cos(a) and cos(180-a) = -cos(a)
$\dfrac{1}{4}$${(\cos (36) - \cos (108))^2}$=$\dfrac{{\text{k}}}{{{\text{16}}}}$ ……(2)
cos(-a) = cos(a) and cos(90+a) = -sin(a)
$\dfrac{1}{4}$${(\cos (36) - \cos (90 + 18))^2}$=$\dfrac{{\text{k}}}{{{\text{16}}}}$
$\dfrac{1}{4}$${(\cos (36) + \sin (18))^2}$=$\dfrac{{\text{k}}}{{{\text{16}}}}$
As we know the value of cos36 =$\dfrac{{\sqrt 5 + 1}}{4}$, sin18 =$\dfrac{{\sqrt 5 - 1}}{4}$
On putting the values of cos90, cos18 and cos54 in equation number (2) we get,
$\dfrac{1}{4}$(\[\]${\left( {\dfrac{{\sqrt 5 + 1}}{4} + \dfrac{{\sqrt 5 - 1}}{4}} \right)^2}$=$\dfrac{{\text{k}}}{{{\text{16}}}}$
$\dfrac{1}{4}$(\[\]${\left( {\dfrac{{\sqrt 5 }}{2}} \right)^2}$=$\dfrac{{\text{k}}}{{{\text{16}}}}$
Further solving the equation we get the equation as:
$\dfrac{5}{{16}}$=$\dfrac{{\text{k}}}{{{\text{16}}}}$
So, k = 5.
Hence, the value of k is 5.
Note – Whenever you face such types of problems you have to use the general formulas and value of trigonometric functions. Doing this will solve your half of the question. After that solving the equation algebraically we will reach the correct solution of the question.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE