Answer
Verified
433.5k+ views
Hint: This question is from the topic of solutions of quadratic equations. We have to solve this question using the quadratic formula. To solve this we need to know the quadratic formula and discriminant of a quadratic equation. Discriminant of a quadratic equation gives details about the nature of the roots of a quadratic equation. This question is very easy. You just need to apply the formula. Try once by yourself before looking at a complete solution.
Complete step by step solution:
Let us try to solve this question in which we have to find the roots of a quadratic equation ${x^2} - 3x - 2 = 0$ using the quadratic formula. Quadratic formula is given by $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ for any general quadratic equation $a{x^2} + bx + c = 0$ where ${b^2} - 4ac$ is called the discriminant of quadratic equation, it tells the nature of roots of quadratic equation. Here are conditions:
1) Two distinct real roots, if ${b^2} - 4ac > 0$
2) Two equal real roots, if ${b^2} - 4ac = 0$
3) No real roots, if ${b^2} - 4ac < 0$
In the given quadratic equation we have,
$
a = 1 \\
b = - 3 \\
c = - 2 \\
$
Discriminant of the quadratic equation is
$
{b^2} - 4ac = {(3)^2} - 4 \cdot 1 \cdot ( - 2) \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 9 + 8 \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 17 > 0 \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\
$
Hence the given quadratic equation has two distinct real roots, because discriminant is greater than $0$.
Now putting values of $a,b$ and $c$ in quadratic formula we get,
\[
x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} = \dfrac{{ - ( - 3) \pm \sqrt {{{( - 3)}^2} - 4 \cdot 1 \cdot ( -
2)} }}{2} \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{3 \pm \sqrt {9 + 8} }}{2} \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{3 \pm \sqrt {17} }}{2} \\
\]
Hence the root of quadratic equation ${x^2} - 3x - 2 = 0$ are $x = \dfrac{{3 + \sqrt {17} }}{2}$and$x = \dfrac{{3 - \sqrt {17} }}{2}$.
Note: To solve questions in which you are asked to find the roots of quadratic equations by quadratic formula you must need to know the formula. We can also solve this by using other methods of finding roots of a quadratic equation such as completing square method and factor method.
Complete step by step solution:
Let us try to solve this question in which we have to find the roots of a quadratic equation ${x^2} - 3x - 2 = 0$ using the quadratic formula. Quadratic formula is given by $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ for any general quadratic equation $a{x^2} + bx + c = 0$ where ${b^2} - 4ac$ is called the discriminant of quadratic equation, it tells the nature of roots of quadratic equation. Here are conditions:
1) Two distinct real roots, if ${b^2} - 4ac > 0$
2) Two equal real roots, if ${b^2} - 4ac = 0$
3) No real roots, if ${b^2} - 4ac < 0$
In the given quadratic equation we have,
$
a = 1 \\
b = - 3 \\
c = - 2 \\
$
Discriminant of the quadratic equation is
$
{b^2} - 4ac = {(3)^2} - 4 \cdot 1 \cdot ( - 2) \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 9 + 8 \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 17 > 0 \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\
$
Hence the given quadratic equation has two distinct real roots, because discriminant is greater than $0$.
Now putting values of $a,b$ and $c$ in quadratic formula we get,
\[
x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} = \dfrac{{ - ( - 3) \pm \sqrt {{{( - 3)}^2} - 4 \cdot 1 \cdot ( -
2)} }}{2} \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{3 \pm \sqrt {9 + 8} }}{2} \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{3 \pm \sqrt {17} }}{2} \\
\]
Hence the root of quadratic equation ${x^2} - 3x - 2 = 0$ are $x = \dfrac{{3 + \sqrt {17} }}{2}$and$x = \dfrac{{3 - \sqrt {17} }}{2}$.
Note: To solve questions in which you are asked to find the roots of quadratic equations by quadratic formula you must need to know the formula. We can also solve this by using other methods of finding roots of a quadratic equation such as completing square method and factor method.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
What organs are located on the left side of your body class 11 biology CBSE