Answer
Verified
432k+ views
Hint: We first explain the process of exponents and indices. We find the general form. Then we explain the different binary operations on exponents. We use the identities We find the relation between negative exponent and inverse of the number to find the solution.
Complete step-by-step solution:
We know the exponent form of the number $a$ with the exponent being $n$ can be expressed as ${{a}^{n}}$.
For our given equation ${{9}^{2x+1}}={{3}^{5x-1}}$, we convert all the given numbers as the power of value 3. We know that $9={{3}^{2}}$.
If we take two exponential expressions where the exponents are $m$ and $n$.
Let the numbers be ${{a}^{m}}$ and ${{a}^{n}}$. We take multiplication of these numbers.
The indices get added. So, ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$.
The division works in an almost similar way. The indices get subtracted. So, $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$.
We also have the identity of ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$.
Therefore, for the left-hand side of the equation \[{{9}^{2x+1}}={{\left( {{3}^{2}} \right)}^{2x+1}}={{3}^{4x+2}}\].
We have the final equation where ${{3}^{4x+2}}={{3}^{5x-1}}$.
Now we know that if the bases are equal and power are different as ${{a}^{m}}={{a}^{n}}$ then $m=n$.
For the equation ${{3}^{4x+2}}={{3}^{5x-1}}$, we get $4x+2=5x-1$ which gives
$\begin{align}
& 4x+2=5x-1 \\
& \Rightarrow 5x-4x=2+1 \\
& \Rightarrow x=3 \\
\end{align}$.
Therefore, solving the equation ${{9}^{2x+1}}={{3}^{5x-1}}$ we get $x=3$.
Note: The addition and subtraction for exponents works for taking common terms out depending on the values of the indices.
For numbers ${{a}^{m}}$ and ${{a}^{n}}$, we have ${{a}^{m}}\pm {{a}^{n}}={{a}^{m}}\left( 1\pm {{a}^{n-m}} \right)$.the relation is independent of the values of $m$ and $n$. We need to remember that the condition for ${{a}^{m}}={{a}^{n}}\Rightarrow m=n$ is that the value of $a\ne 0,\pm 1$.
Complete step-by-step solution:
We know the exponent form of the number $a$ with the exponent being $n$ can be expressed as ${{a}^{n}}$.
For our given equation ${{9}^{2x+1}}={{3}^{5x-1}}$, we convert all the given numbers as the power of value 3. We know that $9={{3}^{2}}$.
If we take two exponential expressions where the exponents are $m$ and $n$.
Let the numbers be ${{a}^{m}}$ and ${{a}^{n}}$. We take multiplication of these numbers.
The indices get added. So, ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$.
The division works in an almost similar way. The indices get subtracted. So, $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$.
We also have the identity of ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$.
Therefore, for the left-hand side of the equation \[{{9}^{2x+1}}={{\left( {{3}^{2}} \right)}^{2x+1}}={{3}^{4x+2}}\].
We have the final equation where ${{3}^{4x+2}}={{3}^{5x-1}}$.
Now we know that if the bases are equal and power are different as ${{a}^{m}}={{a}^{n}}$ then $m=n$.
For the equation ${{3}^{4x+2}}={{3}^{5x-1}}$, we get $4x+2=5x-1$ which gives
$\begin{align}
& 4x+2=5x-1 \\
& \Rightarrow 5x-4x=2+1 \\
& \Rightarrow x=3 \\
\end{align}$.
Therefore, solving the equation ${{9}^{2x+1}}={{3}^{5x-1}}$ we get $x=3$.
Note: The addition and subtraction for exponents works for taking common terms out depending on the values of the indices.
For numbers ${{a}^{m}}$ and ${{a}^{n}}$, we have ${{a}^{m}}\pm {{a}^{n}}={{a}^{m}}\left( 1\pm {{a}^{n-m}} \right)$.the relation is independent of the values of $m$ and $n$. We need to remember that the condition for ${{a}^{m}}={{a}^{n}}\Rightarrow m=n$ is that the value of $a\ne 0,\pm 1$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE