Answer
Verified
367.2k+ views
Hint: We have to find the value of \[x\] from the given expression \[\left| {3x - 5} \right| = 1\] . We solve this question using the concept of solving linear equations and the concept of splitting of modulus functions . First we would simplify the terms of the left hand side by splitting the modulus function and taking plus - minus on one side i.e. either on the left hand side or on the right hand side , we would obtain two relations in terms of \[x\] . On further solving the two expressions we get the values of \[x\] .
Complete step-by-step solution:
Given :
\[\left| {3x - 5} \right| = 1\]
Splitting the modulus function , we get
\[\left( {3x - 5} \right) = \pm 1\]
Let us consider the expression as two cases as :
\[Case{\text{ }}1{\text{ }}:\]
\[3x - 5 = 1\]
Simplifying the terms , we get
\[3x = 1 + 5\]
\[3x = 6\]
Cancelling the terms , we get the value of \[x\] as :
\[x = 2\]
\[Case{\text{ }}2{\text{ }}:\]
\[3x - 5 = - 1\]
Simplifying the terms , we get
\[3x = - 1 + 5\]
\[3x = 4\]
Solving the term , we get the value of \[x\] as :
\[x = \dfrac{4}{3}\]
Hence, the value of \[x\] for the given expression \[\left| {3x - 5} \right| = 1\] are \[2\] and \[\dfrac{4}{3}\].
Note: Modulus function: It is a function which always gives a positive value when applied to a function irrespective of the values of the function . The graph of a modulus function is a V shaped graph where the tip is the point of contact on the graph . We add \[ \pm \] for removing the modulus function as we don’t know the value was taken as negative or positive , so to remove errors while solving we add \[ \pm \] sign and solve it for two cases separately .
Example : The value of a mod function is as given below
\[\left| { - 1} \right| = 1\]
\[\left| 1 \right| = 1\]
We get the value as \[1\] for both \[ + 1\] or \[ - 1\] .
Complete step-by-step solution:
Given :
\[\left| {3x - 5} \right| = 1\]
Splitting the modulus function , we get
\[\left( {3x - 5} \right) = \pm 1\]
Let us consider the expression as two cases as :
\[Case{\text{ }}1{\text{ }}:\]
\[3x - 5 = 1\]
Simplifying the terms , we get
\[3x = 1 + 5\]
\[3x = 6\]
Cancelling the terms , we get the value of \[x\] as :
\[x = 2\]
\[Case{\text{ }}2{\text{ }}:\]
\[3x - 5 = - 1\]
Simplifying the terms , we get
\[3x = - 1 + 5\]
\[3x = 4\]
Solving the term , we get the value of \[x\] as :
\[x = \dfrac{4}{3}\]
Hence, the value of \[x\] for the given expression \[\left| {3x - 5} \right| = 1\] are \[2\] and \[\dfrac{4}{3}\].
Note: Modulus function: It is a function which always gives a positive value when applied to a function irrespective of the values of the function . The graph of a modulus function is a V shaped graph where the tip is the point of contact on the graph . We add \[ \pm \] for removing the modulus function as we don’t know the value was taken as negative or positive , so to remove errors while solving we add \[ \pm \] sign and solve it for two cases separately .
Example : The value of a mod function is as given below
\[\left| { - 1} \right| = 1\]
\[\left| 1 \right| = 1\]
We get the value as \[1\] for both \[ + 1\] or \[ - 1\] .
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE