Answer
Verified
499.2k+ views
Hint: For solving such types of questions, proceed with multiplying the terms in order to find some common terms and make a substitution with some common term.
Given equation is $x\left( {2x + 1} \right)\left( {x - 2} \right)\left( {2x - 3} \right) = 63$
We will try to separate some common term after multiplying the terms
$
\Rightarrow x\left( {2x + 1} \right)\left( {x - 2} \right)\left( {2x - 3} \right) = 63 \\
\Rightarrow \left\{ {x\left( {2x - 3} \right)} \right\}\left\{ {\left( {2x + 1} \right)\left( {x - 2} \right)} \right\} = 63 \\
\Rightarrow \left\{ {2{x^2} - 3x} \right\}\left\{ {2{x^2} - 4x + x - 2} \right\} = 63 \\
\Rightarrow \left\{ {2{x^2} - 3x} \right\}\left\{ {2{x^2} - 3x - 2} \right\} = 63 \\
$
Now let us substitute some common term
Let $2{x^2} - 3x = t$ -----(1)
So now the equation becomes
$ \Rightarrow t\left( {t - 2} \right) = 63$
Now solving this quadratic equation by simplifying the middle term method
$
\Rightarrow {t^2} - 2t - 63 = 0 \\
\Rightarrow {t^2} - 9t + 7t - 63 = 0 \\
\Rightarrow t\left( {t - 9} \right) + 7\left( {t - 9} \right) = 0 \\
\Rightarrow \left( {t + 7} \right)\left( {t - 9} \right) = 0 \\
$
Hence we get 2 different values of t
$t = - 7,t = 9$
Now putting the value of $t$ back in equation (1), we have
$ \Rightarrow 2{x^2} - 3x = - 7\& 2{x^2} - 3x = 9$
Taking first equation we have
$
\Rightarrow 2{x^2} - 3x = - 7 \\
\Rightarrow 2{x^2} - 3x + 7 = 0 \\
$
We know that roots of any quadratic equation of general form $a{x^2} + bx + c = 0$ are
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
So the roots of first quadratic equation are
$
\Rightarrow x = \dfrac{{ - \left( { - 3} \right) \pm \sqrt {{3^2} - 4\left( 2 \right)\left( 7 \right)} }}{{2\left( 2 \right)}} \\
\Rightarrow x = \dfrac{{3 \pm \sqrt {9 - 56} }}{4} \\
\Rightarrow x = \dfrac{{3 \pm \sqrt { - 47} }}{4} \\
$
Now taking second equation we have
$
\Rightarrow 2{x^2} - 3x = 9 \\
\Rightarrow 2{x^2} - 3x - 9 = 0 \\
\Rightarrow 2{x^2} - 6x + 3x - 9 = 0 \\
\Rightarrow 2x\left( {x - 3} \right) + 3\left( {x - 3} \right) = 0 \\
\Rightarrow \left( {2x + 3} \right)\left( {x - 3} \right) = 0 \\
\Rightarrow x = 3,x = \dfrac{{ - 3}}{2} \\
$
Hence we have 4 roots of the given equation, they are:
$x = \dfrac{{3 + \sqrt { - 47} }}{4},x = \dfrac{{3 - \sqrt { - 47} }}{4},x = 3\& x = \dfrac{{ - 3}}{2}$
Note: Since the quadratic equation is of degree 4 so it must have 4 roots. The problem became easier after substitution of terms in between for simplification. After the substitution the problem of degree 4 reduced to that of degree 2. So simplification is the key to the solution. Also this type of higher degree problem is solved by hit and trial for one root and converting the problem to lower degree.
Given equation is $x\left( {2x + 1} \right)\left( {x - 2} \right)\left( {2x - 3} \right) = 63$
We will try to separate some common term after multiplying the terms
$
\Rightarrow x\left( {2x + 1} \right)\left( {x - 2} \right)\left( {2x - 3} \right) = 63 \\
\Rightarrow \left\{ {x\left( {2x - 3} \right)} \right\}\left\{ {\left( {2x + 1} \right)\left( {x - 2} \right)} \right\} = 63 \\
\Rightarrow \left\{ {2{x^2} - 3x} \right\}\left\{ {2{x^2} - 4x + x - 2} \right\} = 63 \\
\Rightarrow \left\{ {2{x^2} - 3x} \right\}\left\{ {2{x^2} - 3x - 2} \right\} = 63 \\
$
Now let us substitute some common term
Let $2{x^2} - 3x = t$ -----(1)
So now the equation becomes
$ \Rightarrow t\left( {t - 2} \right) = 63$
Now solving this quadratic equation by simplifying the middle term method
$
\Rightarrow {t^2} - 2t - 63 = 0 \\
\Rightarrow {t^2} - 9t + 7t - 63 = 0 \\
\Rightarrow t\left( {t - 9} \right) + 7\left( {t - 9} \right) = 0 \\
\Rightarrow \left( {t + 7} \right)\left( {t - 9} \right) = 0 \\
$
Hence we get 2 different values of t
$t = - 7,t = 9$
Now putting the value of $t$ back in equation (1), we have
$ \Rightarrow 2{x^2} - 3x = - 7\& 2{x^2} - 3x = 9$
Taking first equation we have
$
\Rightarrow 2{x^2} - 3x = - 7 \\
\Rightarrow 2{x^2} - 3x + 7 = 0 \\
$
We know that roots of any quadratic equation of general form $a{x^2} + bx + c = 0$ are
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
So the roots of first quadratic equation are
$
\Rightarrow x = \dfrac{{ - \left( { - 3} \right) \pm \sqrt {{3^2} - 4\left( 2 \right)\left( 7 \right)} }}{{2\left( 2 \right)}} \\
\Rightarrow x = \dfrac{{3 \pm \sqrt {9 - 56} }}{4} \\
\Rightarrow x = \dfrac{{3 \pm \sqrt { - 47} }}{4} \\
$
Now taking second equation we have
$
\Rightarrow 2{x^2} - 3x = 9 \\
\Rightarrow 2{x^2} - 3x - 9 = 0 \\
\Rightarrow 2{x^2} - 6x + 3x - 9 = 0 \\
\Rightarrow 2x\left( {x - 3} \right) + 3\left( {x - 3} \right) = 0 \\
\Rightarrow \left( {2x + 3} \right)\left( {x - 3} \right) = 0 \\
\Rightarrow x = 3,x = \dfrac{{ - 3}}{2} \\
$
Hence we have 4 roots of the given equation, they are:
$x = \dfrac{{3 + \sqrt { - 47} }}{4},x = \dfrac{{3 - \sqrt { - 47} }}{4},x = 3\& x = \dfrac{{ - 3}}{2}$
Note: Since the quadratic equation is of degree 4 so it must have 4 roots. The problem became easier after substitution of terms in between for simplification. After the substitution the problem of degree 4 reduced to that of degree 2. So simplification is the key to the solution. Also this type of higher degree problem is solved by hit and trial for one root and converting the problem to lower degree.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE