Answer
Verified
470.4k+ views
Hint: There are two terms in the above problem. Simplify the first term separately and then try to bring it in closer form to the second term. Check if they are equal or have any relation.
Complete step by step answer:
Our problem is: \[\dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} - \dfrac{{\tan 8A}}{{\tan 4A}}\]
We will consider the first term, rearrange it with cosine terms and see if we come closer to the second term.
$
\Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} \\
\Rightarrow \dfrac{{\dfrac{1}{{\cos 8A}} - 1}}{{\dfrac{1}{{\cos 4A}} - 1}} = \dfrac{{1 - \cos 8A}}{{1 - \cos 4A}} \times \dfrac{{\cos 4A}}{{\cos 8A}} \\
$
But we know that, $\cos 2\alpha = {\cos ^2}\alpha - {\sin ^2}\alpha = 1 - 2{\sin ^2}\alpha $
We will use this for the first term of the product in the last step. We will get,
$
\Rightarrow \dfrac{{1 - (1 - 2{{\sin }^2}4A)}}{{1 - (1 - 2{{\sin }^2}2A)}} \times \dfrac{{\cos 4A}}{{\cos 8A}} \\
\Rightarrow \dfrac{{{{\sin }^2}4A}}{{{{\sin }^2}2A}} \times \dfrac{{\cos 4A}}{{\cos 8A}} \\
$
We also know that, $\sin 2\alpha = 2\sin \alpha \cos \alpha $. We will use this relation to club together sine and cosine terms in the numerator. After multiplying both numerator and denominator by 2, we get,
$
\Rightarrow \dfrac{{2\sin 4A\cos 4A \times \sin 4A}}{{2{{\sin }^2}2A \times \cos 8A}} \\
\Rightarrow \dfrac{{\sin 8A \times \sin 4A}}{{2{{\sin }^2}2A \times \cos 8A}} \\
$
Therefore, we get,
$
\Rightarrow \dfrac{{\sin 8A}}{{\cos 8A}} \times \dfrac{{\sin 4A}}{{2{{\sin }^2}2A}} \\
\Rightarrow \tan 8A \times \dfrac{{2\sin 2A\cos 2A}}{{2{{\sin }^2}2A}} \\
\Rightarrow \tan 8A \times \dfrac{1}{{\tan 2A}} \\
$
At least we have reached a step where there are some terms in common between the first and second terms in our problem.
$ \Rightarrow \tan 8A\left[ {\dfrac{1}{{\tan 2A}} - \dfrac{1}{{\tan 4A}}} \right]$
But we know that, $\tan 2\alpha = \dfrac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }}$. We will use this for the second term in brackets. We will get,
$
\Rightarrow \tan 8A \times \left[ {\dfrac{1}{{\tan 2A}} - \dfrac{{1 - {{\tan }^2}2A}}{{2\tan 2A}}} \right] \\
\Rightarrow \tan 8A \times \left[ {\dfrac{{2 - (1 - {{\tan }^2}2A)}}{{2\tan 2A}}} \right] \\
\Rightarrow \tan 8A \times \left[ {\dfrac{{1 + {{\tan }^2}2A}}{{2\tan 2A}}} \right] \\
\Rightarrow \tan 8A \times \left[ {\dfrac{{1 + \dfrac{{{{\sin }^2}2A}}{{{{\cos }^2}2A}}}}{{2\dfrac{{\sin 2A}}{{\cos 2A}}}}} \right] \\
\Rightarrow \tan 8A \times \left[ {\dfrac{{\dfrac{{{{\cos }^2}2A + {{\sin }^2}2A}}{{{{\cos }^2}2A}}}}{{2\dfrac{{\sin 2A}}{{\cos 2A}}}}} \right] \\
$
We know that, ${\cos ^2}\alpha + {\sin ^2}\alpha = 1$. We will use this relation in the ultimate numerator inside the bracket and cancel common terms to get,
$
\Rightarrow \tan 8A \times \left[ {\dfrac{1}{{2\sin 2A\cos 2A}}} \right] \\
\Rightarrow \dfrac{{\tan 8A}}{{\sin 4A}} \\
$. Here we have used the identity used in earlier steps.
Any further attempt will keep on adding terms and not simplify it. At $A = 0$, above solution goes to undefined values. At $A = \dfrac{\pi }{8}$, we get, 0. We see that there are steep changes in the values and no unique values for individual values of A.
Note: For such problems, it is better to simplify the terms using different identities of trigonometry and try to explain the range of values the final solution varies between for different values of the independent variable here A.
Complete step by step answer:
Our problem is: \[\dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} - \dfrac{{\tan 8A}}{{\tan 4A}}\]
We will consider the first term, rearrange it with cosine terms and see if we come closer to the second term.
$
\Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} \\
\Rightarrow \dfrac{{\dfrac{1}{{\cos 8A}} - 1}}{{\dfrac{1}{{\cos 4A}} - 1}} = \dfrac{{1 - \cos 8A}}{{1 - \cos 4A}} \times \dfrac{{\cos 4A}}{{\cos 8A}} \\
$
But we know that, $\cos 2\alpha = {\cos ^2}\alpha - {\sin ^2}\alpha = 1 - 2{\sin ^2}\alpha $
We will use this for the first term of the product in the last step. We will get,
$
\Rightarrow \dfrac{{1 - (1 - 2{{\sin }^2}4A)}}{{1 - (1 - 2{{\sin }^2}2A)}} \times \dfrac{{\cos 4A}}{{\cos 8A}} \\
\Rightarrow \dfrac{{{{\sin }^2}4A}}{{{{\sin }^2}2A}} \times \dfrac{{\cos 4A}}{{\cos 8A}} \\
$
We also know that, $\sin 2\alpha = 2\sin \alpha \cos \alpha $. We will use this relation to club together sine and cosine terms in the numerator. After multiplying both numerator and denominator by 2, we get,
$
\Rightarrow \dfrac{{2\sin 4A\cos 4A \times \sin 4A}}{{2{{\sin }^2}2A \times \cos 8A}} \\
\Rightarrow \dfrac{{\sin 8A \times \sin 4A}}{{2{{\sin }^2}2A \times \cos 8A}} \\
$
Therefore, we get,
$
\Rightarrow \dfrac{{\sin 8A}}{{\cos 8A}} \times \dfrac{{\sin 4A}}{{2{{\sin }^2}2A}} \\
\Rightarrow \tan 8A \times \dfrac{{2\sin 2A\cos 2A}}{{2{{\sin }^2}2A}} \\
\Rightarrow \tan 8A \times \dfrac{1}{{\tan 2A}} \\
$
At least we have reached a step where there are some terms in common between the first and second terms in our problem.
$ \Rightarrow \tan 8A\left[ {\dfrac{1}{{\tan 2A}} - \dfrac{1}{{\tan 4A}}} \right]$
But we know that, $\tan 2\alpha = \dfrac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }}$. We will use this for the second term in brackets. We will get,
$
\Rightarrow \tan 8A \times \left[ {\dfrac{1}{{\tan 2A}} - \dfrac{{1 - {{\tan }^2}2A}}{{2\tan 2A}}} \right] \\
\Rightarrow \tan 8A \times \left[ {\dfrac{{2 - (1 - {{\tan }^2}2A)}}{{2\tan 2A}}} \right] \\
\Rightarrow \tan 8A \times \left[ {\dfrac{{1 + {{\tan }^2}2A}}{{2\tan 2A}}} \right] \\
\Rightarrow \tan 8A \times \left[ {\dfrac{{1 + \dfrac{{{{\sin }^2}2A}}{{{{\cos }^2}2A}}}}{{2\dfrac{{\sin 2A}}{{\cos 2A}}}}} \right] \\
\Rightarrow \tan 8A \times \left[ {\dfrac{{\dfrac{{{{\cos }^2}2A + {{\sin }^2}2A}}{{{{\cos }^2}2A}}}}{{2\dfrac{{\sin 2A}}{{\cos 2A}}}}} \right] \\
$
We know that, ${\cos ^2}\alpha + {\sin ^2}\alpha = 1$. We will use this relation in the ultimate numerator inside the bracket and cancel common terms to get,
$
\Rightarrow \tan 8A \times \left[ {\dfrac{1}{{2\sin 2A\cos 2A}}} \right] \\
\Rightarrow \dfrac{{\tan 8A}}{{\sin 4A}} \\
$. Here we have used the identity used in earlier steps.
Any further attempt will keep on adding terms and not simplify it. At $A = 0$, above solution goes to undefined values. At $A = \dfrac{\pi }{8}$, we get, 0. We see that there are steep changes in the values and no unique values for individual values of A.
Note: For such problems, it is better to simplify the terms using different identities of trigonometry and try to explain the range of values the final solution varies between for different values of the independent variable here A.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE