Answer
Verified
500.4k+ views
Hint: we need to know the basic factorization of quadratic equations to solve this problem.
Given equation is $5\sqrt {\frac{3}{x}} + 7 + \sqrt {\frac{x}{3}} = 22\frac{2}{3}$
For simplification of calculations put $t = \sqrt {\frac{3}{x}} $ then $\sqrt {\frac{x}{3}} = \frac{1}{t}$ , then the given equation will be
$5t + \frac{7}{t} = \frac{{68}}{3}$
Simplifying the above equation
$\frac{{5{t^2} + 7}}{t} = \frac{{68}}{3}$
$15{t^2} + 21 = 68t$
$15{t^2} - 68t + 21 = 0$
Now we got a quadratic equation, on factorization we get
$15{t^2} - 5t - 63t + 21 = 0$
$5t(3t - 1) - 21(3t - 1) = 0$
$(5t - 21)(3t - 1) = 0$
$t = \frac{{21}}{5},\frac{1}{3}$
Now, we know that $t = \sqrt {\frac{3}{x}} $
${t^2} = \frac{3}{x}$
$x = \frac{3}{{{t^2}}}$ , solving for the values of x using t value.
For $t = \frac{{21}}{5}$
$$x = \frac{3}{{{{\left( {\frac{{21}}{5}} \right)}^2}}} = \frac{{25}}{{147}}$$
For $t = \frac{1}{3}$
$x = \frac{3}{{{{\left( {\frac{1}{3}} \right)}^2}}} = 27$
$\therefore x = 27,\frac{{25}}{{147}}$ are the required values.
Note: Here we are converting the given equation into a quadratic equation by using the substitution method. We substituted $\sqrt {\frac{3}{x}} $as t, after substitution we simplified the equation and solved for t. After getting t values, we have to again substitute the value of t in terms of x, then finding x values easily.
Given equation is $5\sqrt {\frac{3}{x}} + 7 + \sqrt {\frac{x}{3}} = 22\frac{2}{3}$
For simplification of calculations put $t = \sqrt {\frac{3}{x}} $ then $\sqrt {\frac{x}{3}} = \frac{1}{t}$ , then the given equation will be
$5t + \frac{7}{t} = \frac{{68}}{3}$
Simplifying the above equation
$\frac{{5{t^2} + 7}}{t} = \frac{{68}}{3}$
$15{t^2} + 21 = 68t$
$15{t^2} - 68t + 21 = 0$
Now we got a quadratic equation, on factorization we get
$15{t^2} - 5t - 63t + 21 = 0$
$5t(3t - 1) - 21(3t - 1) = 0$
$(5t - 21)(3t - 1) = 0$
$t = \frac{{21}}{5},\frac{1}{3}$
Now, we know that $t = \sqrt {\frac{3}{x}} $
${t^2} = \frac{3}{x}$
$x = \frac{3}{{{t^2}}}$ , solving for the values of x using t value.
For $t = \frac{{21}}{5}$
$$x = \frac{3}{{{{\left( {\frac{{21}}{5}} \right)}^2}}} = \frac{{25}}{{147}}$$
For $t = \frac{1}{3}$
$x = \frac{3}{{{{\left( {\frac{1}{3}} \right)}^2}}} = 27$
$\therefore x = 27,\frac{{25}}{{147}}$ are the required values.
Note: Here we are converting the given equation into a quadratic equation by using the substitution method. We substituted $\sqrt {\frac{3}{x}} $as t, after substitution we simplified the equation and solved for t. After getting t values, we have to again substitute the value of t in terms of x, then finding x values easily.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE