Answer
Verified
451.2k+ views
Hint: Multiply both sides of the equation with 4 to get rid of the fractional terms. Now, take the terms containing ‘y’ to the left – hand side. Apply simple addition and subtraction to simplify the terms. Find the value of ‘y’ to get the answer.
Complete step by step answer:
We have been provided with the equation: - \[\dfrac{3y}{2}+\dfrac{y+4}{4}=5-\dfrac{y-2}{4}\]. We have to solve this equation, that means we have to find the value of y.
As we can see that, this is a linear equation in one variable, which is y. Therefore, we have,
Multiplying both sides of the equation with 4, we get,
\[\begin{align}
& \Rightarrow \left( 2\times 3y \right)+\left( y+4 \right)=5\times 4-\left( y-2 \right) \\
& \Rightarrow 6y+y+4=20-y+2 \\
& \Rightarrow 7y+4=22-y \\
\end{align}\]
Taking the terms containing ‘y’ to the L.H.S and the constant terms to the R.H.S, we get,
\[\begin{align}
& \Rightarrow 7y+y=22-4 \\
& \Rightarrow 8y=18 \\
& \Rightarrow y=\dfrac{18}{8} \\
\end{align}\]
Cancelling the common factors, we get,
\[\Rightarrow y=\dfrac{9}{4}\]
Hence, the value of y is \[\dfrac{9}{4}\].
Note: One may note that we have been provided with a single equation only. The reason is that, we have to find the value of only one variable, that is y. So, if we have to solve an equation having ‘n’ number of variables then we should be provided with ‘n’ equations. Now, one can check the answer by substituting the obtained value of ‘y’ in the equation provided in the question. We have to determine the value of L.H.S and R.H.S separately and if they are equal then our answer is correct.
Complete step by step answer:
We have been provided with the equation: - \[\dfrac{3y}{2}+\dfrac{y+4}{4}=5-\dfrac{y-2}{4}\]. We have to solve this equation, that means we have to find the value of y.
As we can see that, this is a linear equation in one variable, which is y. Therefore, we have,
Multiplying both sides of the equation with 4, we get,
\[\begin{align}
& \Rightarrow \left( 2\times 3y \right)+\left( y+4 \right)=5\times 4-\left( y-2 \right) \\
& \Rightarrow 6y+y+4=20-y+2 \\
& \Rightarrow 7y+4=22-y \\
\end{align}\]
Taking the terms containing ‘y’ to the L.H.S and the constant terms to the R.H.S, we get,
\[\begin{align}
& \Rightarrow 7y+y=22-4 \\
& \Rightarrow 8y=18 \\
& \Rightarrow y=\dfrac{18}{8} \\
\end{align}\]
Cancelling the common factors, we get,
\[\Rightarrow y=\dfrac{9}{4}\]
Hence, the value of y is \[\dfrac{9}{4}\].
Note: One may note that we have been provided with a single equation only. The reason is that, we have to find the value of only one variable, that is y. So, if we have to solve an equation having ‘n’ number of variables then we should be provided with ‘n’ equations. Now, one can check the answer by substituting the obtained value of ‘y’ in the equation provided in the question. We have to determine the value of L.H.S and R.H.S separately and if they are equal then our answer is correct.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE