Solve the following equation \[\dfrac{{x - 1}}{2} - x + 13 = 5 - x\]
Answer
Verified
402.3k+ views
Hint: Rearrange the given equation such that the unknown terms arranged on one side and all other terms are arranged on other side and then compare both sides and with further simplification we can determine the value of unknown terms.
Given: \[\dfrac{{x - 1}}{2} - x + 13 = 5 - x\]
To find: the value of ‘x’
Complete step by step answer:
Step 1: Firstly we will determine the number of unknown terms in the given equation.
\[\dfrac{{x - 1}}{2} - x + 13 = 5 - x\]
So here we have only one unknown term so we require only one equation to determine the value of ‘x’
Step 2: multiply both sides of the equation with 2 such that all the denominator part get reduced and we get a simple linear equation
\[\dfrac{{x - 1}}{2} - x + 13 = 5 - x\]
\[2 \times (\dfrac{{x - 1}}{2} - x + 13) = (5 - x) \times 2\]
Opening the bracket and we get
\[(x - 1) - 2 \times x + 2 \times 13 = 5 \times 2 - x \times 2\]
Step 3: rearranging the terms such that the unknown term arranged on one side and all other terms are arranged on other side, that is
\[(x - 1) - 2 \times x + 2 \times 13 = 5 \times 2 - x \times 2\]
\[x - 2x - 1 + 26 = 10 - 2x\]
\[x - 2x + 2x = 10 + 1 - 26\]
On further simplification, we get
\[x - 2x + 2x = 10 + 1 - 26\]
\[x = - 15\]
Hence, on solving the given equation we determined the value of ‘x’ and it is equal to \[x = - 15\]
Note: We have different solution methods for different types of equation
We can use the substitution method
We can use the elimination method without multiplication.
We can use the elimination method with multiplication.
There might be the possibility of infinite solution or no solution.
Given: \[\dfrac{{x - 1}}{2} - x + 13 = 5 - x\]
To find: the value of ‘x’
Complete step by step answer:
Step 1: Firstly we will determine the number of unknown terms in the given equation.
\[\dfrac{{x - 1}}{2} - x + 13 = 5 - x\]
So here we have only one unknown term so we require only one equation to determine the value of ‘x’
Step 2: multiply both sides of the equation with 2 such that all the denominator part get reduced and we get a simple linear equation
\[\dfrac{{x - 1}}{2} - x + 13 = 5 - x\]
\[2 \times (\dfrac{{x - 1}}{2} - x + 13) = (5 - x) \times 2\]
Opening the bracket and we get
\[(x - 1) - 2 \times x + 2 \times 13 = 5 \times 2 - x \times 2\]
Step 3: rearranging the terms such that the unknown term arranged on one side and all other terms are arranged on other side, that is
\[(x - 1) - 2 \times x + 2 \times 13 = 5 \times 2 - x \times 2\]
\[x - 2x - 1 + 26 = 10 - 2x\]
\[x - 2x + 2x = 10 + 1 - 26\]
On further simplification, we get
\[x - 2x + 2x = 10 + 1 - 26\]
\[x = - 15\]
Hence, on solving the given equation we determined the value of ‘x’ and it is equal to \[x = - 15\]
Note: We have different solution methods for different types of equation
We can use the substitution method
We can use the elimination method without multiplication.
We can use the elimination method with multiplication.
There might be the possibility of infinite solution or no solution.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
When people say No pun intended what does that mea class 8 english CBSE
Which king started the organization of the Kumbh fair class 8 social science CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
Advantages and disadvantages of science
Write a letter to the Municipal Commissioner to inform class 8 english CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE