Answer
Verified
497.1k+ views
Hint: Square both sides to get and substitute $\dfrac{7x-3}{2x+1}=t$. Take care of extraneous roots which will be due to the quantity inside the square root is $\ge 0$ and denominator of each fraction $\ne 0$. Remove those values at which the above conditions are not satisfied.
Complete step-by-step solution -
Let $t=\dfrac{7x-3}{2x+1}$
So, we have
$\begin{align}
& \dfrac{18\left( 7x-3 \right)}{2x+1}=\dfrac{250\sqrt{2x+1}}{3\sqrt{7x-3}} \\
& \Rightarrow \dfrac{18\left( 7x-3 \right)}{2x+1}=\dfrac{250}{3}\sqrt{\dfrac{2x+1}{7x-3}} \\
& \Rightarrow \dfrac{18\left( 7x-3 \right)}{2x+1}=\dfrac{250}{3\sqrt{\dfrac{7x-3}{2x+1}}} \\
& \Rightarrow 18t=\dfrac{250}{3\sqrt{t}} \\
\end{align}$
Cross multiplying, we get
$54{{t}^{\dfrac{3}{2}}}=\dfrac{250}{3}$
Dividing both sides by 54 we get
$\begin{align}
& \dfrac{54{{t}^{\dfrac{3}{2}}}}{54}=\dfrac{250}{3\times 54} \\
& \Rightarrow {{t}^{\dfrac{3}{2}}}=\dfrac{125}{81} \\
& \Rightarrow {{t}^{\dfrac{3}{2}}}={{\left( \dfrac{5}{3} \right)}^{3}} \\
& \Rightarrow t={{\left( \dfrac{5}{3} \right)}^{3\times \dfrac{2}{3}}} \\
& \Rightarrow t={{\left( \dfrac{5}{3} \right)}^{2}} \\
& \Rightarrow t=\dfrac{25}{9} \\
& \Rightarrow \dfrac{7x-3}{2x+1}=\dfrac{25}{9} \\
\end{align}$
Cross multiplying, we get
$9\left( 7x-3 \right)=25\left( 2x+1 \right)$
Simplifying we get
$63x-27=50x+25$
Transposing 27 to RHS and 50x to LHS we get
$63x-50x=25+27$
Simplifying we get
$13x=52$
Dividing both sides by 13, we get
$\dfrac{13x}{13}=\dfrac{52}{13}$
x = 4
Also, we need to check if the terms under square root are non-negative
We have $7x-3=28-3=25\ge 0$ which satisfies the condition
$2x+1=8+1=9\ge 0$ which also satisfies the condition
Also, we need to check that the terms in the denominator are not equal to 0
Since 2x+1 = 9 and 7x – 3 = 25 are both not equal to 0 we have all the conditions satisfied.
Hence x = 4 is the root of the equation $\dfrac{18\left( 7x-3 \right)}{2x+1}=\dfrac{250\sqrt{2x+1}}{3\sqrt{7x-3}}$
Note: [1] Verification: $\dfrac{18\left( 7x-3 \right)}{2x+1}=\dfrac{18\times 25}{9}=50$
$\dfrac{250\sqrt{2x+1}}{3\sqrt{7x-3}}=\dfrac{250\sqrt{9}}{3\sqrt{25}}=\dfrac{250\times 3}{3\times 5}=50$
Hence $\dfrac{18\left( 7x-3 \right)}{2x+1}=\dfrac{250\sqrt{2x+1}}{3\sqrt{7x-3}}$.
Hence it is verified that x = 4 is the root of the given equation.
[2] Substitution of $t=\dfrac{7x-3}{2x+1}$ was the primary step in solving the question. It reduced the effort in solving the question. Substitutions usually help in solving equations faster. e.g. we can solve the question $\left( x+3 \right)\left( x+4 \right)\left( x+5 \right)\left( x+6 \right)=100$ by expanding and forming a biquadratic and solving that biquadratic which would be very difficult or by substituting ${{x}^{2}}+9x+18=t$ in which case we have
$\left( x+3 \right)\left( x+4 \right)\left( x+5 \right)\left( x+6 \right)=\left[ \left( x+3 \right)\left( x+6 \right) \right]\left[ \left( x+5 \right)\left( x+4 \right) \right]$
= $\left( {{x}^{2}}+9x+18 \right)\left( {{x}^{2}}+9x+20 \right)=t\left( t+2 \right)=\text{ }100$
In this case, it is equivalent to solving two quadratic equations and is much easier than solving the biquadratic equation.
Complete step-by-step solution -
Let $t=\dfrac{7x-3}{2x+1}$
So, we have
$\begin{align}
& \dfrac{18\left( 7x-3 \right)}{2x+1}=\dfrac{250\sqrt{2x+1}}{3\sqrt{7x-3}} \\
& \Rightarrow \dfrac{18\left( 7x-3 \right)}{2x+1}=\dfrac{250}{3}\sqrt{\dfrac{2x+1}{7x-3}} \\
& \Rightarrow \dfrac{18\left( 7x-3 \right)}{2x+1}=\dfrac{250}{3\sqrt{\dfrac{7x-3}{2x+1}}} \\
& \Rightarrow 18t=\dfrac{250}{3\sqrt{t}} \\
\end{align}$
Cross multiplying, we get
$54{{t}^{\dfrac{3}{2}}}=\dfrac{250}{3}$
Dividing both sides by 54 we get
$\begin{align}
& \dfrac{54{{t}^{\dfrac{3}{2}}}}{54}=\dfrac{250}{3\times 54} \\
& \Rightarrow {{t}^{\dfrac{3}{2}}}=\dfrac{125}{81} \\
& \Rightarrow {{t}^{\dfrac{3}{2}}}={{\left( \dfrac{5}{3} \right)}^{3}} \\
& \Rightarrow t={{\left( \dfrac{5}{3} \right)}^{3\times \dfrac{2}{3}}} \\
& \Rightarrow t={{\left( \dfrac{5}{3} \right)}^{2}} \\
& \Rightarrow t=\dfrac{25}{9} \\
& \Rightarrow \dfrac{7x-3}{2x+1}=\dfrac{25}{9} \\
\end{align}$
Cross multiplying, we get
$9\left( 7x-3 \right)=25\left( 2x+1 \right)$
Simplifying we get
$63x-27=50x+25$
Transposing 27 to RHS and 50x to LHS we get
$63x-50x=25+27$
Simplifying we get
$13x=52$
Dividing both sides by 13, we get
$\dfrac{13x}{13}=\dfrac{52}{13}$
x = 4
Also, we need to check if the terms under square root are non-negative
We have $7x-3=28-3=25\ge 0$ which satisfies the condition
$2x+1=8+1=9\ge 0$ which also satisfies the condition
Also, we need to check that the terms in the denominator are not equal to 0
Since 2x+1 = 9 and 7x – 3 = 25 are both not equal to 0 we have all the conditions satisfied.
Hence x = 4 is the root of the equation $\dfrac{18\left( 7x-3 \right)}{2x+1}=\dfrac{250\sqrt{2x+1}}{3\sqrt{7x-3}}$
Note: [1] Verification: $\dfrac{18\left( 7x-3 \right)}{2x+1}=\dfrac{18\times 25}{9}=50$
$\dfrac{250\sqrt{2x+1}}{3\sqrt{7x-3}}=\dfrac{250\sqrt{9}}{3\sqrt{25}}=\dfrac{250\times 3}{3\times 5}=50$
Hence $\dfrac{18\left( 7x-3 \right)}{2x+1}=\dfrac{250\sqrt{2x+1}}{3\sqrt{7x-3}}$.
Hence it is verified that x = 4 is the root of the given equation.
[2] Substitution of $t=\dfrac{7x-3}{2x+1}$ was the primary step in solving the question. It reduced the effort in solving the question. Substitutions usually help in solving equations faster. e.g. we can solve the question $\left( x+3 \right)\left( x+4 \right)\left( x+5 \right)\left( x+6 \right)=100$ by expanding and forming a biquadratic and solving that biquadratic which would be very difficult or by substituting ${{x}^{2}}+9x+18=t$ in which case we have
$\left( x+3 \right)\left( x+4 \right)\left( x+5 \right)\left( x+6 \right)=\left[ \left( x+3 \right)\left( x+6 \right) \right]\left[ \left( x+5 \right)\left( x+4 \right) \right]$
= $\left( {{x}^{2}}+9x+18 \right)\left( {{x}^{2}}+9x+20 \right)=t\left( t+2 \right)=\text{ }100$
In this case, it is equivalent to solving two quadratic equations and is much easier than solving the biquadratic equation.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE