Answer
Verified
502.8k+ views
Hint: Taking L.C.M. of R.H.S. , will give $({\text{x + 1 - x)}}$ term in numerator.
Given, \[\sqrt {\dfrac{{\text{x}}}{{{\text{1 - x}}}}} {\text{ + }}\sqrt {\dfrac{{{\text{1 - x}}}}{{\text{x}}}} {\text{ = 2}}\dfrac{1}{6}\] -- (1)
We need to find the value of x by solving the equation (1). For solving the equation we are going to use the law of surds which states $\sqrt {\dfrac{{\text{a}}}{{\text{b}}}} {\text{ = }}\dfrac{{\sqrt {\text{a}} }}{{\sqrt {\text{b}} }}$ .On applying this law on equation (1) we get, $\dfrac{{\sqrt {\text{x}} }}{{\sqrt {{\text{1 - x}}} }}{\text{ + }}\dfrac{{\sqrt {{\text{1 - x}}} }}{{\sqrt {\text{x}} }}{\text{ = 2}}\dfrac{1}{6}$
Now, for further simplification we are taking L.C.M. on the left hand side.
$\dfrac{{\sqrt {\text{x}} \times \sqrt {\text{x}} {\text{ + }}\sqrt {1{\text{ - x}}} \times \sqrt {{\text{1 - x}}} }}{{\sqrt {{\text{1 - x}}} \times \sqrt {\text{x}} }}{\text{ = 2}}\dfrac{1}{6}$ -- (2)
Another law of surds states that $\sqrt {\text{a}} \times \sqrt {\text{b}} {\text{ = }}\sqrt {{\text{a}} \times {\text{b}}} $ . Using this law on equation (2), we get
$\dfrac{{\sqrt {{\text{x}} \times {\text{x}}} {\text{ + }}\sqrt {\left( {{\text{1 - x}}} \right) \times \left( {{\text{1 - x}}} \right)} }}{{\sqrt {\left( {{\text{1 - x}}} \right) \times {\text{x}}} }}{\text{ = 2}}\dfrac{1}{6}$ . And from law of indices we know that ${{\text{a}}^{\text{m}}}{\text{ }} \times {\text{ }}{{\text{a}}^{\text{n}}}{\text{ = }}{\left( {\text{a}} \right)^{{\text{m + n}}}}$.
In our case m = n = 1. Hence, we get
$\dfrac{{\sqrt {{{\text{x}}^2}} {\text{ + }}\sqrt {{{\left( {{\text{1 - x}}} \right)}^2}} }}{{\sqrt {\left( {1{\text{ - x}}} \right) \times {\text{x}}} }}{\text{ = 2}}\dfrac{1}{6}$
Now, we know that $\sqrt {\text{a}} {\text{ = }}{{\text{a}}^{\dfrac{1}{2}}}$ and another law of indices states that ${\left( {{{\text{a}}^{\text{m}}}} \right)^{\text{n}}}{\text{ = }}{{\text{a}}^{{\text{mn}}}}$. Applying these laws on above equation, we get
$\dfrac{{{{\text{x}}^{2 \times \dfrac{1}{2}}}{\text{ + }}{{\left( {1{\text{ - x}}} \right)}^{2 \times \dfrac{1}{2}}}}}{{{{\left( {{\text{1 - x}}} \right)}^{\dfrac{1}{2}}} \times {{\text{x}}^{\dfrac{1}{2}}}}}{\text{ = 2}}\dfrac{1}{6}$ . Solving it further, we get
$\dfrac{{{\text{x + 1 - x}}}}{{{{\left( {{\text{1 - x}}} \right)}^{\dfrac{1}{2}}} \times {{\text{x}}^{\dfrac{1}{2}}}}}{\text{ = 2}}\dfrac{1}{6}$
$\dfrac{1}{{{{\left( {1{\text{ - x}}} \right)}^{\dfrac{1}{2}}} \times {{\text{x}}^{\dfrac{1}{2}}}}}{\text{ = 2}}\dfrac{1}{6}$
Since ${\text{a}}\dfrac{{\text{b}}}{{\text{c}}}{\text{ = }}\dfrac{{{\text{ac + b}}}}{{\text{c}}}$ . Applying on above equation, we get
$\dfrac{1}{{{{\left( {1{\text{ - x}}} \right)}^{\dfrac{1}{2}}} \times {{\text{x}}^{\dfrac{1}{2}}}}}{\text{ = }}\dfrac{{2 \times 6{\text{ + }}1}}{6}$
$\dfrac{1}{{{{\left( {1{\text{ - x}}} \right)}^{\dfrac{1}{2}}} \times {{\text{x}}^{\dfrac{1}{2}}}}}{\text{ = }}\dfrac{{13}}{6}$
Now, for finding x, we need to perform squaring on both the sides of the equations. On squaring we get,
$\dfrac{1}{{\left( {{\text{1 - x}}} \right) \times \left( {\text{x}} \right)}}{\text{ = }}\dfrac{{169}}{{36}}$
By cross-multiplication, we get
$169(1 - {\text{x)(x) = 36}}$
Solving further we get,
$
169({\text{x - }}{{\text{x}}^2}){\text{ = 36}} \\
{\text{169x - 169}}{{\text{x}}^2}{\text{ = 36}} \\
\\
$
Sending each terms on one side, we get
${\text{169}}{{\text{x}}^2}{\text{ - 169x + 36 = 0}}$ -- (3)
We have a quadratic equation in x. For finding the value of x, we are required to find the real roots of the equation. For any finding the root of any quadratic equation ${\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}}$ , we can use the quadratic formula.
Quadratic formula, ${\text{ x = }}\dfrac{{ - {\text{b}} \pm \sqrt {{{\text{b}}^2} - 4{\text{ac}}} }}{{2{\text{a}}}}$ . In this formula we call the term $\sqrt {{{\text{b}}^2} - 4{\text{ac}}} $ the determinant. If the determinant is positive then only, we will have real roots of the quadratic equation.
Comparing equation (3) with ${\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}}$ , we get
a = 169, b = -169 and c = 36. Applying the quadratic formula we get,
$
{\text{x = }}\dfrac{{169 \pm \sqrt {{{169}^2} - 4(169)(36)} }}{{2(169)}} \\
{\text{x = }}\dfrac{{169 \pm \sqrt {28561 - 24336} }}{{338}} \\
{\text{x = }}\dfrac{{169 \pm \sqrt {4225} }}{{338}} \\
{\text{x = }}\dfrac{{169 \pm 65}}{{338}} \\
{\text{x = }}\dfrac{{13 \pm 5}}{{26}} \\
{\text{x = }}\dfrac{{13 + 5}}{{26}}{\text{ and x = }}\dfrac{{13{\text{ - 5}}}}{{26}} \\
{\text{x = }}\dfrac{{18}}{{26}}{\text{ and x = }}\dfrac{8}{{26}} \\
{\text{x = }}\dfrac{9}{{13}}{\text{ and x = }}\dfrac{4}{{13}} \\
$
We have two real roots of x. Now, for knowing the correct solution of the equation we need to have$\sqrt {\dfrac{{\text{x}}}{{1{\text{ - x}}}}} {\text{ > 0}}$.
For this to be true, x should lie in between (0, 1). And for both the value of x, the condition is true.
Hence, the solution of the equation is x = $\dfrac{9}{{13}}$ and $\dfrac{4}{{13}}$
Note:- In these types of equations , it is required to eliminate square roots. But if we shouldn’t perform squaring in the first step .It will only complicate the problem. We should start with simplifying by using laws of indices and surds.
Given, \[\sqrt {\dfrac{{\text{x}}}{{{\text{1 - x}}}}} {\text{ + }}\sqrt {\dfrac{{{\text{1 - x}}}}{{\text{x}}}} {\text{ = 2}}\dfrac{1}{6}\] -- (1)
We need to find the value of x by solving the equation (1). For solving the equation we are going to use the law of surds which states $\sqrt {\dfrac{{\text{a}}}{{\text{b}}}} {\text{ = }}\dfrac{{\sqrt {\text{a}} }}{{\sqrt {\text{b}} }}$ .On applying this law on equation (1) we get, $\dfrac{{\sqrt {\text{x}} }}{{\sqrt {{\text{1 - x}}} }}{\text{ + }}\dfrac{{\sqrt {{\text{1 - x}}} }}{{\sqrt {\text{x}} }}{\text{ = 2}}\dfrac{1}{6}$
Now, for further simplification we are taking L.C.M. on the left hand side.
$\dfrac{{\sqrt {\text{x}} \times \sqrt {\text{x}} {\text{ + }}\sqrt {1{\text{ - x}}} \times \sqrt {{\text{1 - x}}} }}{{\sqrt {{\text{1 - x}}} \times \sqrt {\text{x}} }}{\text{ = 2}}\dfrac{1}{6}$ -- (2)
Another law of surds states that $\sqrt {\text{a}} \times \sqrt {\text{b}} {\text{ = }}\sqrt {{\text{a}} \times {\text{b}}} $ . Using this law on equation (2), we get
$\dfrac{{\sqrt {{\text{x}} \times {\text{x}}} {\text{ + }}\sqrt {\left( {{\text{1 - x}}} \right) \times \left( {{\text{1 - x}}} \right)} }}{{\sqrt {\left( {{\text{1 - x}}} \right) \times {\text{x}}} }}{\text{ = 2}}\dfrac{1}{6}$ . And from law of indices we know that ${{\text{a}}^{\text{m}}}{\text{ }} \times {\text{ }}{{\text{a}}^{\text{n}}}{\text{ = }}{\left( {\text{a}} \right)^{{\text{m + n}}}}$.
In our case m = n = 1. Hence, we get
$\dfrac{{\sqrt {{{\text{x}}^2}} {\text{ + }}\sqrt {{{\left( {{\text{1 - x}}} \right)}^2}} }}{{\sqrt {\left( {1{\text{ - x}}} \right) \times {\text{x}}} }}{\text{ = 2}}\dfrac{1}{6}$
Now, we know that $\sqrt {\text{a}} {\text{ = }}{{\text{a}}^{\dfrac{1}{2}}}$ and another law of indices states that ${\left( {{{\text{a}}^{\text{m}}}} \right)^{\text{n}}}{\text{ = }}{{\text{a}}^{{\text{mn}}}}$. Applying these laws on above equation, we get
$\dfrac{{{{\text{x}}^{2 \times \dfrac{1}{2}}}{\text{ + }}{{\left( {1{\text{ - x}}} \right)}^{2 \times \dfrac{1}{2}}}}}{{{{\left( {{\text{1 - x}}} \right)}^{\dfrac{1}{2}}} \times {{\text{x}}^{\dfrac{1}{2}}}}}{\text{ = 2}}\dfrac{1}{6}$ . Solving it further, we get
$\dfrac{{{\text{x + 1 - x}}}}{{{{\left( {{\text{1 - x}}} \right)}^{\dfrac{1}{2}}} \times {{\text{x}}^{\dfrac{1}{2}}}}}{\text{ = 2}}\dfrac{1}{6}$
$\dfrac{1}{{{{\left( {1{\text{ - x}}} \right)}^{\dfrac{1}{2}}} \times {{\text{x}}^{\dfrac{1}{2}}}}}{\text{ = 2}}\dfrac{1}{6}$
Since ${\text{a}}\dfrac{{\text{b}}}{{\text{c}}}{\text{ = }}\dfrac{{{\text{ac + b}}}}{{\text{c}}}$ . Applying on above equation, we get
$\dfrac{1}{{{{\left( {1{\text{ - x}}} \right)}^{\dfrac{1}{2}}} \times {{\text{x}}^{\dfrac{1}{2}}}}}{\text{ = }}\dfrac{{2 \times 6{\text{ + }}1}}{6}$
$\dfrac{1}{{{{\left( {1{\text{ - x}}} \right)}^{\dfrac{1}{2}}} \times {{\text{x}}^{\dfrac{1}{2}}}}}{\text{ = }}\dfrac{{13}}{6}$
Now, for finding x, we need to perform squaring on both the sides of the equations. On squaring we get,
$\dfrac{1}{{\left( {{\text{1 - x}}} \right) \times \left( {\text{x}} \right)}}{\text{ = }}\dfrac{{169}}{{36}}$
By cross-multiplication, we get
$169(1 - {\text{x)(x) = 36}}$
Solving further we get,
$
169({\text{x - }}{{\text{x}}^2}){\text{ = 36}} \\
{\text{169x - 169}}{{\text{x}}^2}{\text{ = 36}} \\
\\
$
Sending each terms on one side, we get
${\text{169}}{{\text{x}}^2}{\text{ - 169x + 36 = 0}}$ -- (3)
We have a quadratic equation in x. For finding the value of x, we are required to find the real roots of the equation. For any finding the root of any quadratic equation ${\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}}$ , we can use the quadratic formula.
Quadratic formula, ${\text{ x = }}\dfrac{{ - {\text{b}} \pm \sqrt {{{\text{b}}^2} - 4{\text{ac}}} }}{{2{\text{a}}}}$ . In this formula we call the term $\sqrt {{{\text{b}}^2} - 4{\text{ac}}} $ the determinant. If the determinant is positive then only, we will have real roots of the quadratic equation.
Comparing equation (3) with ${\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}}$ , we get
a = 169, b = -169 and c = 36. Applying the quadratic formula we get,
$
{\text{x = }}\dfrac{{169 \pm \sqrt {{{169}^2} - 4(169)(36)} }}{{2(169)}} \\
{\text{x = }}\dfrac{{169 \pm \sqrt {28561 - 24336} }}{{338}} \\
{\text{x = }}\dfrac{{169 \pm \sqrt {4225} }}{{338}} \\
{\text{x = }}\dfrac{{169 \pm 65}}{{338}} \\
{\text{x = }}\dfrac{{13 \pm 5}}{{26}} \\
{\text{x = }}\dfrac{{13 + 5}}{{26}}{\text{ and x = }}\dfrac{{13{\text{ - 5}}}}{{26}} \\
{\text{x = }}\dfrac{{18}}{{26}}{\text{ and x = }}\dfrac{8}{{26}} \\
{\text{x = }}\dfrac{9}{{13}}{\text{ and x = }}\dfrac{4}{{13}} \\
$
We have two real roots of x. Now, for knowing the correct solution of the equation we need to have$\sqrt {\dfrac{{\text{x}}}{{1{\text{ - x}}}}} {\text{ > 0}}$.
For this to be true, x should lie in between (0, 1). And for both the value of x, the condition is true.
Hence, the solution of the equation is x = $\dfrac{9}{{13}}$ and $\dfrac{4}{{13}}$
Note:- In these types of equations , it is required to eliminate square roots. But if we shouldn’t perform squaring in the first step .It will only complicate the problem. We should start with simplifying by using laws of indices and surds.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE