Answer
Verified
499.2k+ views
Hint: In this question first multiply two factors together and the remaining two together so that it converts into a quadratic equation then substitute the same part to any other variable and multiply later on to apply the quadratic formula, so use these concepts to get the solution of the question.
Given equation is
$\left( {x + 9} \right)\left( {x - 3} \right)\left( {x - 7} \right)\left( {x + 5} \right) = 385$
Now multiply (x+9) and (x-7) together and remaining two together
\[
\left[ {\left( {x + 9} \right)\left( {x - 7} \right)} \right]\left[ {\left( {x - 3} \right)\left( {x + 5} \right)} \right] = 385 \\
\left[ {{x^2} + 9x - 7x - 63} \right]\left[ {{x^2} - 3x + 5x - 15} \right] = 385 \\
\left[ {{x^2} + 2x - 63} \right]\left[ {{x^2} + 2x - 15} \right] = 385 \\
\]
Let, $\left( {{x^2} + 2x} \right) = t...........\left( 1 \right)$
So, substitute this value in the above equation we have
\[
\left[ {t - 63} \right]\left[ {t - 15} \right] = 385 \\
\Rightarrow {t^2} - 15t - 63t + 945 = 385 \\
\Rightarrow {t^2} - 78t + 560 = 0 \\
\]
Now factorize the above equation we have,
\[
\Rightarrow {t^2} - 8t - 70t + 560 = 0 \\
\Rightarrow t\left( {t - 8} \right) - 70\left( {t - 8} \right) = 0 \\
\Rightarrow \left( {t - 8} \right)\left( {t - 70} \right) = 0 \\
\Rightarrow \left( {t - 8} \right) = 0{\text{ & }}\left( {t - 70} \right) = 0 \\
\Rightarrow t = 8{\text{ & }}t = 70 \\
\]
Now from equation (1)
\[
\left( {{x^2} + 2x} \right) = t \\
\Rightarrow \left( {{x^2} + 2x} \right) = 8{\text{ & }}\left( {{x^2} + 2x} \right) = 70 \\
\Rightarrow {x^2} + 2x - 8 = 0..........\left( 2 \right){\text{ & }}{x^2} + 2x - 70 = 0........\left( 3 \right) \\
\]
Now first solve equation (2) by factorization method we have,
\[
\Rightarrow {x^2} + 2x - 8 = 0 \\
\Rightarrow {x^2} + 4x - 2x - 8 = 0 \\
\Rightarrow \left( {x + 4} \right)\left( {x - 2} \right) = 0 \\
\Rightarrow \left( {x + 4} \right) = 0{\text{ & }}\left( {x - 2} \right) = 0 \\
\Rightarrow x = - 4{\text{ & }}x = 2 \\
\]
Now solve equation (3)
\[{x^2} + 2x - 70 = 0\]
This is a quadratic equation so apply quadratic formula
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$ \Rightarrow x = \dfrac{{ - 2 \pm \sqrt {{2^2} - 4\left( 1 \right)\left( { - 70} \right)} }}{2} = \dfrac{{ - 2 \pm \sqrt {284} }}{2} = \dfrac{{ - 2 \pm 2\sqrt {71} }}{2} = - 1 \pm \sqrt {71} $
So, the required solution of the equation is
$x = \left( {2, - 4,\left( { - 1 \pm \sqrt {71} } \right)} \right)$
So, this is the required answer.
Note: In such types of questions start with normal multiplication and then replace some portion of the equation with another variable and convert it into a quadratic equation, now factorize the equation if possible if not apply quadratic formula, so after simplification we will get the required answer.
Given equation is
$\left( {x + 9} \right)\left( {x - 3} \right)\left( {x - 7} \right)\left( {x + 5} \right) = 385$
Now multiply (x+9) and (x-7) together and remaining two together
\[
\left[ {\left( {x + 9} \right)\left( {x - 7} \right)} \right]\left[ {\left( {x - 3} \right)\left( {x + 5} \right)} \right] = 385 \\
\left[ {{x^2} + 9x - 7x - 63} \right]\left[ {{x^2} - 3x + 5x - 15} \right] = 385 \\
\left[ {{x^2} + 2x - 63} \right]\left[ {{x^2} + 2x - 15} \right] = 385 \\
\]
Let, $\left( {{x^2} + 2x} \right) = t...........\left( 1 \right)$
So, substitute this value in the above equation we have
\[
\left[ {t - 63} \right]\left[ {t - 15} \right] = 385 \\
\Rightarrow {t^2} - 15t - 63t + 945 = 385 \\
\Rightarrow {t^2} - 78t + 560 = 0 \\
\]
Now factorize the above equation we have,
\[
\Rightarrow {t^2} - 8t - 70t + 560 = 0 \\
\Rightarrow t\left( {t - 8} \right) - 70\left( {t - 8} \right) = 0 \\
\Rightarrow \left( {t - 8} \right)\left( {t - 70} \right) = 0 \\
\Rightarrow \left( {t - 8} \right) = 0{\text{ & }}\left( {t - 70} \right) = 0 \\
\Rightarrow t = 8{\text{ & }}t = 70 \\
\]
Now from equation (1)
\[
\left( {{x^2} + 2x} \right) = t \\
\Rightarrow \left( {{x^2} + 2x} \right) = 8{\text{ & }}\left( {{x^2} + 2x} \right) = 70 \\
\Rightarrow {x^2} + 2x - 8 = 0..........\left( 2 \right){\text{ & }}{x^2} + 2x - 70 = 0........\left( 3 \right) \\
\]
Now first solve equation (2) by factorization method we have,
\[
\Rightarrow {x^2} + 2x - 8 = 0 \\
\Rightarrow {x^2} + 4x - 2x - 8 = 0 \\
\Rightarrow \left( {x + 4} \right)\left( {x - 2} \right) = 0 \\
\Rightarrow \left( {x + 4} \right) = 0{\text{ & }}\left( {x - 2} \right) = 0 \\
\Rightarrow x = - 4{\text{ & }}x = 2 \\
\]
Now solve equation (3)
\[{x^2} + 2x - 70 = 0\]
This is a quadratic equation so apply quadratic formula
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$ \Rightarrow x = \dfrac{{ - 2 \pm \sqrt {{2^2} - 4\left( 1 \right)\left( { - 70} \right)} }}{2} = \dfrac{{ - 2 \pm \sqrt {284} }}{2} = \dfrac{{ - 2 \pm 2\sqrt {71} }}{2} = - 1 \pm \sqrt {71} $
So, the required solution of the equation is
$x = \left( {2, - 4,\left( { - 1 \pm \sqrt {71} } \right)} \right)$
So, this is the required answer.
Note: In such types of questions start with normal multiplication and then replace some portion of the equation with another variable and convert it into a quadratic equation, now factorize the equation if possible if not apply quadratic formula, so after simplification we will get the required answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE