Answer
Verified
395.1k+ views
Hint: Here we are given three functions $f\left( x \right)$, $g\left( x \right)$ and $h\left( x \right)$.
$f\left( x \right) = \dfrac{1}{{3 - x}}$
$g\left( x \right) = fof$
$h\left( x \right) = fofof$
Now, fof means that g(x) is the function of f, that means we can find g(x) by substituting $f\left( x \right) = \dfrac{1}{{3 - x}}$ in $f\left( x \right)$. Now, fofof means that h(x) is a function of fof and we have found the value for fof as g(x). So, we can find the value of h(x) by substituting g(x) in $f\left( x \right) = \dfrac{1}{{3 - x}}$.
Complete step by step solution:
In this question, we are given three functions $f\left( x \right)$, $g\left( x \right)$ and $h\left( x \right)$ and we are given the value for $f\left( x \right)$.
Given data is:
$f\left( x \right) = \dfrac{1}{{3 - x}}$
$g\left( x \right) = fof$
$h\left( x \right) = fofof$
And we need to find,
$\dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = ?$
So, first of all, g(x) is fof. That means g(x) is a function of f. That means when we substitute the function $f$ in the variable $x$ in function $f$, we get $fof$. Therefore, we get
$
\Rightarrow g\left( x \right) = fof \\
\Rightarrow g\left( x \right) = f\left( {f\left( x \right)} \right) \\
$
Now, we need to put $f\left( x \right) = \dfrac{1}{{3 - x}}$ in $f(x)$
$
\Rightarrow g\left( x \right) = \dfrac{1}{{3 - \dfrac{1}{{3 - x}}}} \\
\Rightarrow g\left( x \right) = \dfrac{1}{{\dfrac{{3\left( {3 - x} \right) - 1}}{{3 - x}}}} \\
\Rightarrow g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{9 - 3x - 1}} \\
\Rightarrow g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{8 - 3x}} \\
$
Hence, we have found the value for g(x) and now we need to find the value for h(x).
Now, h(x) is $fofof$ that means $h$ is a function of $fof$ and we have found the value of $fof$ as $g (x)$. Therefore, we get
$
\Rightarrow h\left( x \right) = fofof \\
\Rightarrow h\left( x \right) = f\left( {fof} \right) \\
\Rightarrow h\left( x \right) = f\left( {g\left( x \right)} \right) \\
$
Now, we need to put $g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{8 - 3x}}$ in $f\left( x \right) = \dfrac{1}{{3 - x}}$. Therefore, we get
$
\Rightarrow h\left( x \right) = \dfrac{1}{{3 - x}} \\
\Rightarrow h\left( x \right) = \dfrac{1}{{3 - \dfrac{{3 - x}}{{8 - 3x}}}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{3\left( {8 - 3x} \right) - 3 + x}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{24 - 9x - 3 + x}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{21 - 8x}} \\
$
Therefore, we now have all the values we need. Therefore, substituting these values, we get
$
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = \dfrac{1}{{\left( {\dfrac{1}{{3 - x}}} \right)\left( {\dfrac{{3 - x}}{{8 - 3x}}} \right)\left( {\dfrac{{8 - 3x}}{{21 - 8x}}} \right)}} \\
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = \dfrac{1}{{\dfrac{1}{{\left( {21 - 8x} \right)}}}} \\
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = 21 - 8x \\
$
Hence, we have found the value of $\dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = 21 - 8x$.
Note:
Properties of composite functions are
Associative Property: If f, g and h are given three functions, then they are said to be associative if
$f \circ \left( {g \circ h} \right) = \left( {f \circ g} \right) \circ h$
Commutative property: If f and g are given two functions, then they are said to be commutative if
$g \circ f = f \circ g$
$f\left( x \right) = \dfrac{1}{{3 - x}}$
$g\left( x \right) = fof$
$h\left( x \right) = fofof$
Now, fof means that g(x) is the function of f, that means we can find g(x) by substituting $f\left( x \right) = \dfrac{1}{{3 - x}}$ in $f\left( x \right)$. Now, fofof means that h(x) is a function of fof and we have found the value for fof as g(x). So, we can find the value of h(x) by substituting g(x) in $f\left( x \right) = \dfrac{1}{{3 - x}}$.
Complete step by step solution:
In this question, we are given three functions $f\left( x \right)$, $g\left( x \right)$ and $h\left( x \right)$ and we are given the value for $f\left( x \right)$.
Given data is:
$f\left( x \right) = \dfrac{1}{{3 - x}}$
$g\left( x \right) = fof$
$h\left( x \right) = fofof$
And we need to find,
$\dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = ?$
So, first of all, g(x) is fof. That means g(x) is a function of f. That means when we substitute the function $f$ in the variable $x$ in function $f$, we get $fof$. Therefore, we get
$
\Rightarrow g\left( x \right) = fof \\
\Rightarrow g\left( x \right) = f\left( {f\left( x \right)} \right) \\
$
Now, we need to put $f\left( x \right) = \dfrac{1}{{3 - x}}$ in $f(x)$
$
\Rightarrow g\left( x \right) = \dfrac{1}{{3 - \dfrac{1}{{3 - x}}}} \\
\Rightarrow g\left( x \right) = \dfrac{1}{{\dfrac{{3\left( {3 - x} \right) - 1}}{{3 - x}}}} \\
\Rightarrow g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{9 - 3x - 1}} \\
\Rightarrow g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{8 - 3x}} \\
$
Hence, we have found the value for g(x) and now we need to find the value for h(x).
Now, h(x) is $fofof$ that means $h$ is a function of $fof$ and we have found the value of $fof$ as $g (x)$. Therefore, we get
$
\Rightarrow h\left( x \right) = fofof \\
\Rightarrow h\left( x \right) = f\left( {fof} \right) \\
\Rightarrow h\left( x \right) = f\left( {g\left( x \right)} \right) \\
$
Now, we need to put $g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{8 - 3x}}$ in $f\left( x \right) = \dfrac{1}{{3 - x}}$. Therefore, we get
$
\Rightarrow h\left( x \right) = \dfrac{1}{{3 - x}} \\
\Rightarrow h\left( x \right) = \dfrac{1}{{3 - \dfrac{{3 - x}}{{8 - 3x}}}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{3\left( {8 - 3x} \right) - 3 + x}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{24 - 9x - 3 + x}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{21 - 8x}} \\
$
Therefore, we now have all the values we need. Therefore, substituting these values, we get
$
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = \dfrac{1}{{\left( {\dfrac{1}{{3 - x}}} \right)\left( {\dfrac{{3 - x}}{{8 - 3x}}} \right)\left( {\dfrac{{8 - 3x}}{{21 - 8x}}} \right)}} \\
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = \dfrac{1}{{\dfrac{1}{{\left( {21 - 8x} \right)}}}} \\
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = 21 - 8x \\
$
Hence, we have found the value of $\dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = 21 - 8x$.
Note:
Properties of composite functions are
Associative Property: If f, g and h are given three functions, then they are said to be associative if
$f \circ \left( {g \circ h} \right) = \left( {f \circ g} \right) \circ h$
Commutative property: If f and g are given two functions, then they are said to be commutative if
$g \circ f = f \circ g$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE