
Solve the following.
$f\left( x \right) = \dfrac{1}{{3 - x}}$, $g\left( x \right) = fof$, $h\left( x \right) = fofof$, then $\dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = ?$
Answer
517.5k+ views
Hint: Here we are given three functions $f\left( x \right)$, $g\left( x \right)$ and $h\left( x \right)$.
$f\left( x \right) = \dfrac{1}{{3 - x}}$
$g\left( x \right) = fof$
$h\left( x \right) = fofof$
Now, fof means that g(x) is the function of f, that means we can find g(x) by substituting $f\left( x \right) = \dfrac{1}{{3 - x}}$ in $f\left( x \right)$. Now, fofof means that h(x) is a function of fof and we have found the value for fof as g(x). So, we can find the value of h(x) by substituting g(x) in $f\left( x \right) = \dfrac{1}{{3 - x}}$.
Complete step by step solution:
In this question, we are given three functions $f\left( x \right)$, $g\left( x \right)$ and $h\left( x \right)$ and we are given the value for $f\left( x \right)$.
Given data is:
$f\left( x \right) = \dfrac{1}{{3 - x}}$
$g\left( x \right) = fof$
$h\left( x \right) = fofof$
And we need to find,
$\dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = ?$
So, first of all, g(x) is fof. That means g(x) is a function of f. That means when we substitute the function $f$ in the variable $x$ in function $f$, we get $fof$. Therefore, we get
$
\Rightarrow g\left( x \right) = fof \\
\Rightarrow g\left( x \right) = f\left( {f\left( x \right)} \right) \\
$
Now, we need to put $f\left( x \right) = \dfrac{1}{{3 - x}}$ in $f(x)$
$
\Rightarrow g\left( x \right) = \dfrac{1}{{3 - \dfrac{1}{{3 - x}}}} \\
\Rightarrow g\left( x \right) = \dfrac{1}{{\dfrac{{3\left( {3 - x} \right) - 1}}{{3 - x}}}} \\
\Rightarrow g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{9 - 3x - 1}} \\
\Rightarrow g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{8 - 3x}} \\
$
Hence, we have found the value for g(x) and now we need to find the value for h(x).
Now, h(x) is $fofof$ that means $h$ is a function of $fof$ and we have found the value of $fof$ as $g (x)$. Therefore, we get
$
\Rightarrow h\left( x \right) = fofof \\
\Rightarrow h\left( x \right) = f\left( {fof} \right) \\
\Rightarrow h\left( x \right) = f\left( {g\left( x \right)} \right) \\
$
Now, we need to put $g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{8 - 3x}}$ in $f\left( x \right) = \dfrac{1}{{3 - x}}$. Therefore, we get
$
\Rightarrow h\left( x \right) = \dfrac{1}{{3 - x}} \\
\Rightarrow h\left( x \right) = \dfrac{1}{{3 - \dfrac{{3 - x}}{{8 - 3x}}}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{3\left( {8 - 3x} \right) - 3 + x}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{24 - 9x - 3 + x}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{21 - 8x}} \\
$
Therefore, we now have all the values we need. Therefore, substituting these values, we get
$
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = \dfrac{1}{{\left( {\dfrac{1}{{3 - x}}} \right)\left( {\dfrac{{3 - x}}{{8 - 3x}}} \right)\left( {\dfrac{{8 - 3x}}{{21 - 8x}}} \right)}} \\
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = \dfrac{1}{{\dfrac{1}{{\left( {21 - 8x} \right)}}}} \\
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = 21 - 8x \\
$
Hence, we have found the value of $\dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = 21 - 8x$.
Note:
Properties of composite functions are
Associative Property: If f, g and h are given three functions, then they are said to be associative if
$f \circ \left( {g \circ h} \right) = \left( {f \circ g} \right) \circ h$
Commutative property: If f and g are given two functions, then they are said to be commutative if
$g \circ f = f \circ g$
$f\left( x \right) = \dfrac{1}{{3 - x}}$
$g\left( x \right) = fof$
$h\left( x \right) = fofof$
Now, fof means that g(x) is the function of f, that means we can find g(x) by substituting $f\left( x \right) = \dfrac{1}{{3 - x}}$ in $f\left( x \right)$. Now, fofof means that h(x) is a function of fof and we have found the value for fof as g(x). So, we can find the value of h(x) by substituting g(x) in $f\left( x \right) = \dfrac{1}{{3 - x}}$.
Complete step by step solution:
In this question, we are given three functions $f\left( x \right)$, $g\left( x \right)$ and $h\left( x \right)$ and we are given the value for $f\left( x \right)$.
Given data is:
$f\left( x \right) = \dfrac{1}{{3 - x}}$
$g\left( x \right) = fof$
$h\left( x \right) = fofof$
And we need to find,
$\dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = ?$
So, first of all, g(x) is fof. That means g(x) is a function of f. That means when we substitute the function $f$ in the variable $x$ in function $f$, we get $fof$. Therefore, we get
$
\Rightarrow g\left( x \right) = fof \\
\Rightarrow g\left( x \right) = f\left( {f\left( x \right)} \right) \\
$
Now, we need to put $f\left( x \right) = \dfrac{1}{{3 - x}}$ in $f(x)$
$
\Rightarrow g\left( x \right) = \dfrac{1}{{3 - \dfrac{1}{{3 - x}}}} \\
\Rightarrow g\left( x \right) = \dfrac{1}{{\dfrac{{3\left( {3 - x} \right) - 1}}{{3 - x}}}} \\
\Rightarrow g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{9 - 3x - 1}} \\
\Rightarrow g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{8 - 3x}} \\
$
Hence, we have found the value for g(x) and now we need to find the value for h(x).
Now, h(x) is $fofof$ that means $h$ is a function of $fof$ and we have found the value of $fof$ as $g (x)$. Therefore, we get
$
\Rightarrow h\left( x \right) = fofof \\
\Rightarrow h\left( x \right) = f\left( {fof} \right) \\
\Rightarrow h\left( x \right) = f\left( {g\left( x \right)} \right) \\
$
Now, we need to put $g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{8 - 3x}}$ in $f\left( x \right) = \dfrac{1}{{3 - x}}$. Therefore, we get
$
\Rightarrow h\left( x \right) = \dfrac{1}{{3 - x}} \\
\Rightarrow h\left( x \right) = \dfrac{1}{{3 - \dfrac{{3 - x}}{{8 - 3x}}}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{3\left( {8 - 3x} \right) - 3 + x}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{24 - 9x - 3 + x}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{21 - 8x}} \\
$
Therefore, we now have all the values we need. Therefore, substituting these values, we get
$
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = \dfrac{1}{{\left( {\dfrac{1}{{3 - x}}} \right)\left( {\dfrac{{3 - x}}{{8 - 3x}}} \right)\left( {\dfrac{{8 - 3x}}{{21 - 8x}}} \right)}} \\
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = \dfrac{1}{{\dfrac{1}{{\left( {21 - 8x} \right)}}}} \\
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = 21 - 8x \\
$
Hence, we have found the value of $\dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = 21 - 8x$.
Note:
Properties of composite functions are
Associative Property: If f, g and h are given three functions, then they are said to be associative if
$f \circ \left( {g \circ h} \right) = \left( {f \circ g} \right) \circ h$
Commutative property: If f and g are given two functions, then they are said to be commutative if
$g \circ f = f \circ g$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

