
Solve the following integral:
$\int {\dfrac{{dx}}{{\sin x + \sin 2x}}} $
Answer
623.1k+ views
Hint- For solving such problems, try to convert the term in simpler form by the help of trigonometric identities ( sin 2x =2 sin x cos x ) and use substitution method and partial fraction.
To solve the given integral, first solving the denominator
\[\sin x + \sin 2x = \sin x + 2\sin x\cos x = \sin x\left[ {1 + 2\cos x} \right]\]
Now let’s put the fraction together and proceeding further:
\[\dfrac{1}{{\sin x + \sin 2x}} = \dfrac{1}{{\sin x\left[ {1 + 2\cos x} \right]}} = \dfrac{{\sin x}}{{{{\sin }^2}x\left[ {1 + 2\cos x} \right]}}\]
Now we can integrate the above term:
\[\int {\dfrac{{\sin x}}{{{{\sin }^2}x\left[ {1 + 2\cos x} \right]}}dx} \]
Let us consider
\[
u = \cos x \\
du = - \sin xdx \\
{\sin ^2}x = 1 - {\cos ^2}x = 1 - {u^2} \\
\int {\dfrac{1}{{\left( {1 - {u^2}} \right)\left( {1 + 2u} \right)}}} \left( { - du} \right) \\
\int {\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}}} du \\
\]
Now let’s take a break from integration and decompose the expression into partial fractions:
\[\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}} = \dfrac{A}{{\left( {1 + u} \right)}} + \dfrac{B}{{\left( {1 - u} \right)}} + \dfrac{C}{{\left( {1 + 2u} \right)}}\]
Multiplying on both sides \[\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)\]to get rid of denominators. We get:
\[
- 1 = A\left( {1 - u} \right)\left( {1 + 2u} \right) + B\left( {1 + u} \right)\left( {1 + 2u} \right) + C\left( {1 - u} \right)\left( {1 + u} \right) \\
- 1 = A\left( {1 + u - 2{u^2}} \right) + B\left( {1 + 3u + 2{u^2}} \right) + C\left( {1 - {u^2}} \right) \\
- 1 = \left( { - 2A + 2B - C} \right){u^2} + \left( {A + 3B} \right)u + \left( {A + B + C} \right) \\
\]
And now on comparing coefficient from both sides, we have three equations and three variables, so solving further:
\[
0 = - 2A + 2B - C \\
0 = A + 3B \\
-1 = A + B + C \\
\]
Adding all the three equations, we get:
\[
- 1 = 6B \\
B = \dfrac{{ - 1}}{6} \\
\]
From the second equation, we get:
\[A = - 3B = \dfrac{3}{6} = \dfrac{1}{2}\]
From the third equation, we get:
\[C = - 1 - A - B = - 1 - \dfrac{1}{2} + \dfrac{1}{6} = \dfrac{{ - 4}}{3}\]
And so we have:
\[\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}} = \dfrac{1}{{2\left( {1 + u} \right)}} - \dfrac{1}{{6\left( {1 - u} \right)}} - \dfrac{4}{{3\left( {1 + 2u} \right)}}\]
Now we can continue with the integration:
\[
{\text{ = }}\int {\dfrac{1}{{2\left( {1 + u} \right)}}du - \int {\dfrac{1}{{6\left( {1 - u} \right)}}du - \int {\dfrac{4}{{3\left( {1 + 2u} \right)}}du} } } \\
= \dfrac{1}{2}\ln \left| {1 + u} \right| + \dfrac{1}{6}\ln \left| {1 - u} \right| - \dfrac{2}{3}\ln \left| {1 + 2u} \right| + C{\text{ }}\left[ {\because \int {\dfrac{1}{x}dx = \ln x + C} } \right] \\
\]
Now after substituting back the considered value of $u$ we get:
\[{\text{ = }}\dfrac{1}{2}\ln \left| {1 + \cos x} \right| + \dfrac{1}{6}\ln \left| {1 - \cos x} \right| - \dfrac{2}{3}\ln \left| {1 + 2\cos x} \right| + C\]
Note- Integration of some questions as above where direct integration is not possible, solving by the use of partial fraction is very useful. Also sometimes we have to consider some functions like $\sin \& \cos $in terms of some variables, such as $u$ in this case.
To solve the given integral, first solving the denominator
\[\sin x + \sin 2x = \sin x + 2\sin x\cos x = \sin x\left[ {1 + 2\cos x} \right]\]
Now let’s put the fraction together and proceeding further:
\[\dfrac{1}{{\sin x + \sin 2x}} = \dfrac{1}{{\sin x\left[ {1 + 2\cos x} \right]}} = \dfrac{{\sin x}}{{{{\sin }^2}x\left[ {1 + 2\cos x} \right]}}\]
Now we can integrate the above term:
\[\int {\dfrac{{\sin x}}{{{{\sin }^2}x\left[ {1 + 2\cos x} \right]}}dx} \]
Let us consider
\[
u = \cos x \\
du = - \sin xdx \\
{\sin ^2}x = 1 - {\cos ^2}x = 1 - {u^2} \\
\int {\dfrac{1}{{\left( {1 - {u^2}} \right)\left( {1 + 2u} \right)}}} \left( { - du} \right) \\
\int {\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}}} du \\
\]
Now let’s take a break from integration and decompose the expression into partial fractions:
\[\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}} = \dfrac{A}{{\left( {1 + u} \right)}} + \dfrac{B}{{\left( {1 - u} \right)}} + \dfrac{C}{{\left( {1 + 2u} \right)}}\]
Multiplying on both sides \[\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)\]to get rid of denominators. We get:
\[
- 1 = A\left( {1 - u} \right)\left( {1 + 2u} \right) + B\left( {1 + u} \right)\left( {1 + 2u} \right) + C\left( {1 - u} \right)\left( {1 + u} \right) \\
- 1 = A\left( {1 + u - 2{u^2}} \right) + B\left( {1 + 3u + 2{u^2}} \right) + C\left( {1 - {u^2}} \right) \\
- 1 = \left( { - 2A + 2B - C} \right){u^2} + \left( {A + 3B} \right)u + \left( {A + B + C} \right) \\
\]
And now on comparing coefficient from both sides, we have three equations and three variables, so solving further:
\[
0 = - 2A + 2B - C \\
0 = A + 3B \\
-1 = A + B + C \\
\]
Adding all the three equations, we get:
\[
- 1 = 6B \\
B = \dfrac{{ - 1}}{6} \\
\]
From the second equation, we get:
\[A = - 3B = \dfrac{3}{6} = \dfrac{1}{2}\]
From the third equation, we get:
\[C = - 1 - A - B = - 1 - \dfrac{1}{2} + \dfrac{1}{6} = \dfrac{{ - 4}}{3}\]
And so we have:
\[\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}} = \dfrac{1}{{2\left( {1 + u} \right)}} - \dfrac{1}{{6\left( {1 - u} \right)}} - \dfrac{4}{{3\left( {1 + 2u} \right)}}\]
Now we can continue with the integration:
\[
{\text{ = }}\int {\dfrac{1}{{2\left( {1 + u} \right)}}du - \int {\dfrac{1}{{6\left( {1 - u} \right)}}du - \int {\dfrac{4}{{3\left( {1 + 2u} \right)}}du} } } \\
= \dfrac{1}{2}\ln \left| {1 + u} \right| + \dfrac{1}{6}\ln \left| {1 - u} \right| - \dfrac{2}{3}\ln \left| {1 + 2u} \right| + C{\text{ }}\left[ {\because \int {\dfrac{1}{x}dx = \ln x + C} } \right] \\
\]
Now after substituting back the considered value of $u$ we get:
\[{\text{ = }}\dfrac{1}{2}\ln \left| {1 + \cos x} \right| + \dfrac{1}{6}\ln \left| {1 - \cos x} \right| - \dfrac{2}{3}\ln \left| {1 + 2\cos x} \right| + C\]
Note- Integration of some questions as above where direct integration is not possible, solving by the use of partial fraction is very useful. Also sometimes we have to consider some functions like $\sin \& \cos $in terms of some variables, such as $u$ in this case.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

