Answer
Verified
396.6k+ views
Hint: If f is continuous on [a,b], then the function g is defined by \[g(x) = \int\limits_a^x {f(t)dt} \],\[a \leqslant x \leqslant b\], is continuous on [a,b] and differentiable on (a,b), and \[g'(x) = f(x)\]
If f is continuous on [a,b], then \[\int\limits_a^b {f(x)dx} = F(b) - F(a)\]where F is any alternative of f, that is, a function such that F’=f
A definite integral is denoted by \[\int\limits_a^b {f(x)dx} \] which represent the area bounded by the curve \[y = f(x)\], the ordinates x=a, x=b and the x-axis.
Complete step by step answer:
Step 1: let,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {(2\log \sin x - \log \sin 2x)dx} \]
Now, from trigonometry properties we know that
Sin2x=2SinxCosx
Substituting the value of sin2x, we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log (2\sin x\cos x)]dx} \]
Step 2: from logarithm property we know that, \[\log (a.b) = \log a + \log b\], using this property of logarithm in our solution,we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log (2\sin x\cos x)]dx} \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log 2 - \log \sin x - \log \cos x]dx} \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[\log \sin x - \log 2 - \log \cos x]dx} \]
Step 3: opening the closed bracket so that we can integrate each term separately
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[\log \sin x - \log 2 - \log \cos x]dx} \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} } \]
Now let
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
From properties of integration we know that,
\[\int\limits_0^a {f(x)dx} = \int\limits_0^a {f(a - x)} dx\]
Using this property, we get
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos (\dfrac{\pi }{2} - x)dx} \]
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]
Now, substituting the value of I1 in I we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} } \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - } \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]
Step 4: cancelling the term\[\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \], we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - } \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]
\[I = - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} \]
\[I = - \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} \] (Log2 is a constant and therefore taking log2 outside the integration)
\[I = - \log 2\left[ x \right]_0^{\dfrac{\pi }{2}}\]
\[I = - \log 2[\dfrac{\pi }{2} - 0]\]
After further simplification, we get
\[I = \dfrac{\pi }{2}\log \dfrac{1}{2}\]
Hence, the answer is\[\int\limits_0^{\dfrac{\pi }{2}} {(2\log \sin x - \log \sin 2x)dx} = \dfrac{\pi }{2}\log \dfrac{1}{2}\]
Note: While converting \[\sin x\] to \[\cos x\] or vice-versa, always use the quadrant method for giving signs (negative or positive).
Use standard result for solving easily like\[\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx = - \dfrac{\pi }{2}} \log 2 = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
If f is continuous on [a,b], then \[\int\limits_a^b {f(x)dx} = F(b) - F(a)\]where F is any alternative of f, that is, a function such that F’=f
A definite integral is denoted by \[\int\limits_a^b {f(x)dx} \] which represent the area bounded by the curve \[y = f(x)\], the ordinates x=a, x=b and the x-axis.
Complete step by step answer:
Step 1: let,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {(2\log \sin x - \log \sin 2x)dx} \]
Now, from trigonometry properties we know that
Sin2x=2SinxCosx
Substituting the value of sin2x, we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log (2\sin x\cos x)]dx} \]
Step 2: from logarithm property we know that, \[\log (a.b) = \log a + \log b\], using this property of logarithm in our solution,we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log (2\sin x\cos x)]dx} \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log 2 - \log \sin x - \log \cos x]dx} \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[\log \sin x - \log 2 - \log \cos x]dx} \]
Step 3: opening the closed bracket so that we can integrate each term separately
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[\log \sin x - \log 2 - \log \cos x]dx} \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} } \]
Now let
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
From properties of integration we know that,
\[\int\limits_0^a {f(x)dx} = \int\limits_0^a {f(a - x)} dx\]
Using this property, we get
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos (\dfrac{\pi }{2} - x)dx} \]
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]
Now, substituting the value of I1 in I we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} } \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - } \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]
Step 4: cancelling the term\[\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \], we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - } \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]
\[I = - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} \]
\[I = - \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} \] (Log2 is a constant and therefore taking log2 outside the integration)
\[I = - \log 2\left[ x \right]_0^{\dfrac{\pi }{2}}\]
\[I = - \log 2[\dfrac{\pi }{2} - 0]\]
After further simplification, we get
\[I = \dfrac{\pi }{2}\log \dfrac{1}{2}\]
Hence, the answer is\[\int\limits_0^{\dfrac{\pi }{2}} {(2\log \sin x - \log \sin 2x)dx} = \dfrac{\pi }{2}\log \dfrac{1}{2}\]
Note: While converting \[\sin x\] to \[\cos x\] or vice-versa, always use the quadrant method for giving signs (negative or positive).
Use standard result for solving easily like\[\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx = - \dfrac{\pi }{2}} \log 2 = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE